首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shifts in pollen vectors favour diversification of floral traits, and differences in pollination strategies between congeneric sympatric species can contribute to reproductive isolation. Divergence in flowering phenology and selfing could also reduce interspecific crossing between self‐compatible species. We investigated floral traits and visitation rates of pollinators of two sympatric Encholirium species on rocky outcrops to evaluate whether prior knowledge of floral characters could indicate actual pollinators. Data on flowering phenology, visitation rates and breeding system were used to evaluate reproductive isolation. Flowering phenology overlapped between species, but there were differences in floral characters, nectar volume and concentration. Several hummingbird species visited flowers of both Encholirium spp., but the endemic bat Lonchophylla bokermanni and an unidentified sphingid only visited E. vogelii. Pollination treatments demonstrated that E. heloisae and E. vogelii were partially self‐compatible, with weak pollen limitation to seed set. Herbivores feeding on inflorescences decreased reproductive output of both species, but for E. vogelii the damage was higher. Our results indicate that actual pollinators can be known beforehand through floral traits, in agreement with pollination syndromes stating that a set of floral traits can be associated with the attraction of specific groups of pollinators. Divergence on floral traits and pollinator assemblage indicate that shifts in pollination strategies contribute to reproductive isolation between these Encholirium species, not divergence on flowering phenology or selfing. We suggest that hummingbird pollination might be the ancestral condition in Encholirium and that evolution of bat pollination made a substantial contribution to the diversification of this clade.  相似文献   

2.
Evolutionists have long recognized the role of reproductive isolation in speciation, but the relative contributions of different reproductive barriers are poorly understood. We examined the nature of isolation between Mimulus lewisii and M. cardinalis, sister species of monkeyflowers. Studied reproductive barriers include: ecogeographic isolation; pollinator isolation (pollinator fidelity in a natural mixed population); pollen competition (seed set and hybrid production from experimental interspecific, intraspecific, and mixed pollinations in the greenhouse); and relative hybrid fitness (germination, survivorship, percent flowering, biomass, pollen viability, and seed mass in the greenhouse). Additionally, the rate of hybridization in nature was estimated from seed collections in a sympatric population. We found substantial reproductive barriers at multiple stages in the life history of M. lewisii and M. cardinalis. Using range maps constructed from herbarium collections, we estimated that the different ecogeographic distributions of the species result in 58.7% reproductive isolation. Mimulus lewisii and M. cardinalis are visited by different pollinators, and in a region of sympatry 97.6% of pollinator foraging bouts were specific to one species or the other. In the greenhouse, interspecific pollinations generated nearly 50% fewer seeds than intraspecific controls. Mixed pollinations of M. cardinalis flowers yielded >75% parentals even when only one-quarter of the pollen treatment consisted of M. cardinalis pollen. In contrast, both species had similar siring success on M. lewisii flowers. The observed 99.915% occurrence of parental M. lewisii and M. cardinalis in seeds collected from a sympatric population is nearly identical to that expected, based upon our field observations of pollinator behavior and our laboratory experiments of pollen competition. F1 hybrids exhibited reduced germination rates, high survivorship and reproduction, and low pollen and ovule fertility. In aggregate, the studied reproductive barriers prevent, on average, 99.87% of gene flow, with most reproductive isolation occurring prior to hybrid formation. Our results suggest that ecological factors resulting from adaptive divergence are the primary isolating barriers in this system. Additional studies of taxa at varying degrees of evolutionary divergence are needed to identify the relative importance of pre- and postzygotic isolating mechanisms in speciation.  相似文献   

3.
Pollinator‐mediated competition through shared pollinators can lead to segregated flowering phenologies, but empirical evidence for the process responsible for this flowering pattern is sparse. During two flowering seasons, we examined whether increasing overlap in flowering phenology decreased conspecific pollination, increased heterospecific pollination, and depressed seed output in the seven species composing a hummingbird–plant assemblage from the temperate forest of southern South America. Overall trends were summarized using meta‐analysis. Despite prevailing negative associations, relations between phenological overlap and conspecific pollen receipt varied extensively among species and between years. Heterospecific pollen receipt was low and presumably of limited biological significance. However, our results supported the hypothesis that concurrent flowering promotes interspecific pollen transfer, after accounting for changes in the abundance of conspecific flowers. Seed output was consistently reduced during maximum phenological overlap during the first flowering season because of limited fruit set. Responses varied more during the second year, despite an overall negative trend among species. Relations between estimated effects of phenological overlap on pollination and seed output, however, provided mixed evidence that conspecific pollen loss during pollinator visits to foreign flowers increases pollen limitation. By flowering together, different plant species might benefit each other's pollination by increasing hummingbird recruitment at the landscape level. Nevertheless, our results are mostly consistent with the hypothesis of pollinator‐mediated competition shaping the segregated flowering pattern reported previously for this temperate plant assemblage. The mechanisms likely involve effects on male function, whereby pollen‐transport loss during heterospecific flower visits limit pollen export, and more variable effects on female function through pollen limitation.  相似文献   

4.
Synchronous and intermittent plant reproduction has been identified widely in diverse biomes. While synchronous flowering is normally observed within the same species, different species also flower in synchrony. A well-known example of interspecific synchrony is “general flowering" in tropical rain forests of Southeast Asia. Environmental factors, such as low temperature and drought, have been considered as major trigger of general flowering. However, environmental cues are not enough to explain general flowering because some trees do not flower even when they encounter favorable environmental cues. We propose alternative explanation of general flowering; “pollinator coupling”. When species flower synchronously, the elevated pollen and nectar resource may attract increased numbers of generalist pollinators, with a concomitant enhancement of pollination success (facilitation). However, under these circumstances, plants of different species may compete with one another for limited pollinator services, resulting in declines in pollination success for individual species (competition). Here, we present a model describing resource dynamics of individual trees serviced by generalist pollinators. We analyze combinations of conditions under which plants reproduce intermittently with synchronization within species, and/or (sometimes) between different species. We show that plants synchronize flowering when the number of pollinators attracted to an area increases at an accelerating rate with increasing numbers of flowers. In this case, facilitation of flowering by different species exceeds the negative influence of interspecific plant competition. We demonstrate mathematically that co-flowering of different species occurs under a much narrower range of circumstances than intraspecific co-flowering.  相似文献   

5.
Pollinator activity and competition for pollinators lead to quantitative and qualitative pollen limitations on seed production and affect the reproductive success of plant species, depending on their breeding system (e.g., self‐compatibility and heterospecific compatibility) and genetic load (e.g., inbreeding depression and hybrid inviability). In alpine ecosystems, snowmelt regimes determine the distribution and phenology of plant communities. Plant species growing widely along a snowmelt gradient often grow with different species among local populations. Their pollinators also vary in their abundance, activity, and behavior during the season. These variations may modify plant–pollinator and plant–plant interactions. We integrated a series of our studies on the alpine dwarf shrub, Phyllodoce aleutica (Ericaceae), to elucidate the full set of intrinsic (species‐specific breeding system) and extrinsic factors (snow condition, pollinator activity, and interspecific competition) acting on their reproductive process. Seasonality of pollinator activity led to quantitative pollen limitation in the early‐blooming populations, whereas in the late‐blooming populations, high pollinator activity ensured pollination service, but interspecific competition for pollinators led to qualitative and quantitative pollen limitation in less competitive species. However, negative effects of illegitimate pollen receipt on seed‐set success might be reduced when cryptic incompatibility systems (i.e., outcross pollen grains took priority over self‐ and heterospecific pollen grains) could effectively prevent ovule and seed discounting. Our studies highlight the importance of species‐specific responses of plant reproduction to changing pollinator availability along environmental gradients to understand the general features of pollination networks in alpine ecosystems.  相似文献   

6.
杂交种子研究在一定程度上能说明是否存在杂种不活机制,在植物生殖隔离研究中具有重要意义。通过对同域分布的西藏杓兰(Cypripedium tibeticum)、黄花杓兰(C.flavum)和褐花杓兰(C.calcicola)的自交、异交、杂交种子的形态特征及活性进行分析,发现3种杓兰属植物两两之间均可产生杂交种子,且杂交种子活性较高,杂交种子与其他处理所得种子的外观、表面纹饰无显著性差异;种子宽度、种子长度、有胚率、着色率并没有比自交或异交种子显著低。这一结果表明这3种同域杓兰属植物种与种之间具有相当高的亲和性,它们之间不存在明显的杂种不活机制。黄花杓兰与西藏杓兰或褐花杓兰间的传粉者大小明显不同,黄花杓兰由丽蝇和熊蜂工蜂传粉,而西藏杓兰和褐花杓兰由体形较大的熊蜂蜂王传粉,传粉者隔离已使得它们之间的物种界限比较清晰,因此已经没有必要再产生杂种不活等其他隔离机制。而西藏杓兰与褐花杓兰的传粉者相同,又没有明显的杂种不活隔离机制,暗示它们之间有其他合子后隔离机制或应将其合并为一个种。  相似文献   

7.
Ecological factors that reduce the effectiveness of cross-pollination are likely to play a role in the frequent evolution of routine self-fertilization in flowering plants. However, we lack empirical evidence linking the reproductive assurance value of selfing in poor pollination environments to evolutionary shifts in mating system. Here, we investigated the adaptive significance of prior selfing in the polymorphic annual plant Arenaria uniflora (Caryophyllaceae), in which selfer populations occur only in areas of range overlap with congener A. glabra. To examine the hypothesis that secondary contact between the two species contributed to the evolution and maintenance of selfing, we used field competition experiments and controlled hand-pollinations to measure the female fitness consequences of pollinator-mediated interspecific interactions. Uniformly high fruit set by selfers in the naturally pollinated field arrays confirmed the reproductive assurance value of selfing, whereas substantial reductions in outcrosser fruit set (15%) and total seed production (20–35%) in the presence of A. glabra demonstrated that pollinator-mediated interactions can provide strong selection for self-pollination. Heterospecific pollen transfer, rather than competition for pollinator service, appears to be the primary mechanism of pollinator-mediated competition in Arenaria. Premating barriers to hybridization between outcrossers and A. glabra are extremely weak. The production of a few inviable hybrid seeds after heterospecific pollination and intermediate seed set after mixed pollinations indicates that A. glabra pollen can usurp A. uniflora ovules. Thus, any visit to A. uniflora by shared pollinators carries a potential female fitness cost. Moreover, patterns of fruit set and seed set in the competition arrays relative to controls were consistent with the receipt of mixed pollen loads, rather than a lack of pollinator visits. Competition through pollen transfer favors preemptive self-pollination and may be responsible for the evolution of a highly reduced floral morphology in A. uniflora selfers as well as their current geographical distribution.  相似文献   

8.
Many species of Dipterocarpaceae and other plant families reproduce synchronously at irregular, multi‐year intervals in Southeast Asian forests. These community‐wide general flowering events are thought to facilitate seed survival through satiation of generalist seed predators. During a general flowering event, closely related Shorea species (Dipterocarpaceae) stagger their flowering times by several weeks, which may minimize cross pollination and interspecific competition for pollinators. Generalist, pre‐dispersal seed predators might also track flowering hosts and influence predator satiation. We addressed the question of whether pre‐dispersal seed predation differed between early and late flowering Shorea species by monitoring flowering, fruiting and seed predation intensity over two general flowering events at the Pasoh Research Forest, Malaysia. Pre‐dispersal insect seed predators killed up to 63 percent of developing seeds, with Nanophyes shoreae, a weevil that feeds on immature seeds being the most important predator for all Shorea species. This weevil caused significantly greater pre‐dispersal seed predation in earlier flowering species. Long larval development time precluded oviposition by adults that emerged from the earliest flowering Shorea on the final flowering Shorea. In contrast, larvae of weevils that feed on mature seeds before seed dispersal (Alcidodes spp.), appeared in seeds of all Shorea species almost simultaneously. We conclude that general flowering events have the potential to satiate post‐dispersal seed predators and pre‐dispersal seed predators of mature fruit, but are less effective at satiating pre‐dispersal predators of immature fruit attacking early flowering species.  相似文献   

9.
The plant life cycle is often affected by animal–plant interactions. In insect‐pollinated plants, interaction with pollinators is very important. When pollen transfer due to a lower abundance of pollinators limits seed production, selection pressures on plant traits related to plant attraction to pollinators might occur, e.g. on flowering phenology, height or number of flowerheads. Landscape changes (e.g. habitat fragmentation or changed habitat conditions) may cause plant–pollinator systems to lose balance and consequently affect population dynamics of many plant species. We studied the relationship between measured plant traits, environmental variables and pollinator preferences in Scorzonera hispanica (Asteraceae), a rare perennial, allogamous herb of open grasslands. We estimated the pollen limitation by comparing seed set of supplemental‐pollinated plants with that of open‐pollinated ones. Pollinators selected plants based on position within the locality (isolated plants close to trees) rather than on their traits. In spite of a high proportion of undeveloped seeds on the plants, we demonstrated that they are not pollen limited. Instead, seed set and weight of seeds was correlated with plant size traits (height and flowerhead number), with larger plants producing more and larger seeds. This suggests that the studied plants are likely resource limited. Overall, the results suggest that pollinators are not a selection factor in this system, in contrast to studies on various plant species, including self‐compatible species of the Asteraceae. The lack of any effect of pollinators in the system may be caused by a strong negative effect of ungulate herbivores, which could play a decisive role in functioning of the system.  相似文献   

10.
Speciation often involves the evolution of numerous prezygotic and postzygotic isolating barriers between divergent populations. Detailed knowledge of the strength and nature of those barriers provides insight into ecological and genetic factors that directly or indirectly influenced their origin, and may help predict whether they will be maintained in the face of sympatric hybridization and introgression. We estimated the magnitude of pre- and postzygotic barriers between naturally occurring sympatric populations of Mimulus guttatus and M. nasutus. Prezygotic barriers, including divergent flowering phenologies, differential pollen production, mating system isolation, and conspecific pollen precedence, act asymmetrically to completely prevent the formation of F(1) hybrids among seeds produced by M. guttatus (F(1)g), and reduce F(1) hybrid production among seeds produced by M. nasutus (F(1)n) to only about 1%. Postzygotic isolation is also asymmetric: in field experiments, F(1)g but not F(1)n hybrids had significantly reduced germination rates and survivorship compared to parental species. Both hybrid classes had flower, pollen, and seed production values within the range of parental values. Despite the moderate degree of F(1)g hybrid inviability, postzygotic isolation contributes very little to the total isolation between these species in the wild. We also found that F(1) hybrid flowering phenology overlapped more with M. guttatus than M. nasutus. These results, taken together, suggest greater potential for introgression from M. nasutus to M. guttatus than for the reverse direction. We also address problems with commonly used indices of isolation, discuss difficulties in calculating meaningful measures of reproductive isolation when barriers are asymmetric, and propose novel measures of prezygotic isolation that are consistent with postzygotic measures.  相似文献   

11.
Coexisting plant congeners often experience strong competition for resources. Competition for pollinators can result in direct fitness costs via reduced seed set or indirect costs via heterospecific pollen transfer (HPT), causing subsequent gamete loss and unfit hybrid offspring production. Autonomous selfing may alleviate these costs, but to preempt HPT, selfing should occur early, before opportunities for HPT occur (i.e., “preemptive selfing hypothesis”). We evaluated conditions for this hypothesis in Collinsia sister species, C. linearis and C. rattanii. In field studies, we found virtually identical flowering times and pollinator sharing between congeners in sympatric populations. Compared to allopatric populations, sympatric C. linearis populations enjoyed higher pollinator visitation rates, whereas visitation to C. rattanii did not differ in sympatry. Importantly, the risk of HPT to each species in sympatry was strongly asymmetrical; interspecies visits comprised 40% of all flower‐to‐flower visits involving C. rattanii compared to just 4% involving C. linearis. Additionally, our greenhouse experiment demonstrated a strong cost of hybridization when C. rattanii was the pollen donor. Together, these results suggest that C. rattanii pays the greatest cost of pollinator sharing. Matching predictions of the preemptive selfing hypothesis, C. rattanii exhibit significantly earlier selfing in sympatric relative to allopatric populations.  相似文献   

12.
Many flowering plants rely on pollinators, self-fertilization, or both for reproduction. We model the consequences of these features for plant population dynamics and mating system evolution. Our mating systems-based population dynamics model includes an Allee effect. This often leads to an extinction threshold, defined as a density below which population densities decrease. Reliance on generalist pollinators who primarily visit higher density plant species increases the extinction threshold, whereas autonomous modes of selfing decrease and can eliminate the threshold. Generalist pollinators visiting higher density plant species coupled with autonomous selfing may introduce an effect where populations decreasing in density below the extinction threshold may nonetheless persist through selfing. The extinction threshold and selfing at low density result in populations where individuals adopting a single reproductive strategy exhibit mating systems that depend on population density. The ecological and evolutionary analyses provide a mechanism where prior selfing evolves even though inbreeding depression is greater than one-half. Simultaneous consideration of ecological and evolutionary dynamics confirms unusual features (e.g., evolution into extinction or abrupt increases in population density) implicit in our separate consideration of ecological and evolutionary scenarios. Our analysis has consequences for understanding pollen limitation, reproductive assurance, and the evolution of mating systems.  相似文献   

13.
Failures in the process of pollen transfer among conspecific plants can severely impact female reproductive success. Thus, pollen limitation can cause selection on plant mating systems and floral traits. The relationships between pollen limitation and floral traits might be partly mediated by the quantity and identity of pollinator visits. However, very little is known about the relationship between pollinator visits and pollen limitation. We examined the relationships between pollen limitation and floral traits at the community level to connect them to community ecology processes. We used 48 plant species from two contrasting communities: one species‐rich lowland community and one species‐poor alpine community. In addition, we calculated visitation rates and ecological pollination generalization for 38 of the species to examine the relationship between pollinator visitation and pollen limitation at the community level. We found low overall levels of pollen limitation that did not differ significantly between the alpine and the lowland community. In both communities, species with evolutionary specialized flowers were more pollen limited than species with unspecialized flowers. Species’ visitation rates and selfing capability were negatively related to pollen limitation in the alpine community, where pollinators are scarcer. However, flower size/number, ecological generalization of plants and flowering onset had greater effects on pollen limitation levels at the lowland community, indicating that the identity of the visitors and plant‐plant competitive interactions are more decisive for plant reproduction in this species‐rich community. There, pollen limitation increased with flower size and flowering onset, and decreased with ecological generalization, but only in species with evolutionary specialized flowers. Our study suggests that selection on plant mating system and floral traits may be idiosyncratic to each particular community and highlights the benefits of conducting community‐level studies for a better understanding of the processes underlying evolutionary responses to pollen limitation.  相似文献   

14.
Many plant species reward their pollinators, whereas some species, particularly among orchids, do not. Similarity of floral cues between co‐flowering species influences how rapidly pollinators learn to avoid deceptive plants. This learning process, which affects the reproductive success of deceptive plants, may additionally depend on relative timing of flowering of sympatric rewarding and deceptive species. We tested the combined effects of corolla colour similarity and flowering order of rewarding and deceptive artificial inflorescences on visitation by naïve bumblebees. When deceptive inflorescences were offered after rewarding inflorescences, bumblebees visited them four times more often if both species were similar compared with when they were dissimilar. Pollinator visitation rate to deceptive inflorescences offered before rewarding inflorescences was intermediate and independent of similarity. Thus, early‐flowering deceptive species avoid the costs of dissimilarity with rewarding species. This mechanism may favour adaptive evolution of flowering phenology in deceptive species and explain why temperate deceptive orchids usually flower earlier than rewarding ones.  相似文献   

15.
Investigating plant–pollinator interactions and pollen dispersal are particularly relevant for understanding processes ensuring long‐term viability of fragmented plant populations. Pollen dispersal patterns may vary strongly, even between similar congeneric species, depending on the mating system, pollinator assemblages and floral traits. We investigated pollen dispersal and fruit production in a population of Vaccinium oxycoccos, an insect‐pollinated shrub, and compared the pollen dispersal pattern with a co‐flowering, sympatric congener, V. uliginosum. We examined whether they share pollinators (through interspecific fluorescent dye transfers) and may differently attract pollinators, by comparing their floral colour as perceived by insects. Fluorescent dyes were mainly dispersed over short distances (80% within 40.4 m (max. 94.5 m) for V. oxycoccos and 3.0 m (max. 141.3 m) for V. uliginosum). Dye dispersal in V. oxycoccos was not significantly affected by plant area, floral display or the proximity to V. uliginosum plants. Interspecific dye transfers were observed, indicating pollinator sharing. The significantly lower dye deposition on V. oxycoccos stigmas suggests lower visitation rates by pollinators, despite higher flower density and local abundance. The spectral reflectance analysis indicates that bees are unlikely to be able to discriminate between the two species based on floral colour alone. Fruit production increased with increasing floral display, but was not affected by proximity to V. uliginosum plants. Our study highlights that fragmented populations of V. oxycoccos, when sympatric with co‐flowering V. uliginosum, might incur increased competition for the shared pollinators in the case of pollination disruption, which might then reduce outcrossed seed set.  相似文献   

16.
Self‐pollination has been hypothesized to be beneficial in environments where pollinators are rare as it can provide reproductive assurance. This study presents evidence for an autonomous self‐fertilization mechanism in the winter flowering plant, Brandisia hancei. To determine changes in the spatial separation of stigma and anthers, the length of style and stamens was recorded. Additionally, pollination treatments were carried out to test fruit‐set and seed production. Brandisia hancei is herkogamic in the early flowering stages. However, different growth rates of the filament and style lead to contact of stigma and anthers in the later stages, thereby facilitating self‐pollination. The highest seeds number is produced under an out‐crossing scenario but plants produce a considerable number of seeds even when purely selfed. Although pollinators are scarce, autonomous selfing alleviates the pollen limitation in B. hancei. Self‐fertilization in B. hancei seems to be an adaptive strategy to ensure reproduction when pollinators are scarce.  相似文献   

17.
同域物种形成是指在缺少地理隔离的情况下分化出新种,相比异域物种形成更为罕见,存在较多的研究空白.该文分析了近十年来与被子植物同域物种形成相关的国内外研究,着重论述同域物种形成的影响因素和种对间的生殖隔离.考虑到历史上的地理隔离难以确定,加之种对间亲缘关系很近,同域物种的判定容易引发争议.其成因可分为生态因素和突变因素:...  相似文献   

18.
Aims When sympatric flowering plant species in a natural community share pollinators, study of plant–plant interactions via interspecific pollen transfer (IPT) is essential for understanding species coexistence. However, little is known about the extent of IPT between interactive species and its causes.Methods To explore how sympatric flowering plants sharing pollinators minimize deleterious effects of IPT, we investigated the pollination ecology of two endemic species, Salvia przewalskii and Delphinium yuanum, in an alpine meadow in the Hengduan Mountains, southwest China. We quantified conspecific and interspecific visits by shared bumblebee pollinators, amounts of pollen placed on different body sites of the pollinators and stigmatic pollen loads on open-pollinated flowers. To examine whether IPT affects female fitness, we measured pollen germination and seed production in the two species in an artificial pollination experiment.Important findings One bumblebee species, Bombus trifasciatus, was found to be the sole effective pollinator for the two coflowering species. Pollination experiments indicated that deposition of heterospecific pollen could significantly decrease seed set in both species. Experiments showed that S. przewalskii pollen could germinate well on stigmas of D. yuanum, inhibiting conspecific pollen germination in D. yuanum. However, seed set was not lower under open pollination than under cross-pollination within species, suggesting that no female fitness loss was caused by IPT. In foraging bouts with pollinator switches, switches from S. przewalskii to D. yuanum were relatively more frequent (8.27%) than the converse (1.72%). However, IPT from S. przewalskii to D. yuanum accounted for only 1.82% of total stigmatic pollen loads while the reverse IPT to S. przewalskii was 8.70%, indicating that more switches of bumblebees to D. yuanum did not result in higher IPT. By contrast, selection for reduced IPT to S. przewalskii would limit pollinator switches from D. yuanum. We found that a bumblebee generally carried pollen grains from both species but the two species differed in the position of pollen placement on the bumblebee's body; S. przewalskii ' s pollen was concentrated on the dorsal thorax while D. yuanum ' s pollen was concentrated ventrally on the head. This differential pollen placement along with pollinator fidelity largely reduced IPT between the two species with a shared pollinator.  相似文献   

19.
In order to discuss the cross compatibility and hybrid seed vigor of sympatric species among Guralensis, Gglabra and Geurycarpa distributed in Xinjiang, the cross fruiting rate, the pollen germination on stigma, the pollen tube growth in style after cross pollination and germination parameters of hybrid seeds were analyzed. Results showed that there was highly cross compatibility among these three Glycyrrhiza plants and their hybrids seeds were highly vigor. It suggested that the interspecific isolation mechanism of the three Glycyrrhiza plants was weak. Moreover, the natural hybridizations may occur and form natural hybrid zone.  相似文献   

20.
Coexistence among species that lack genetic barriers to hybridization usually depends on pre-mating isolating barriers. It has been difficult to explain coexistence among African Aloe species because they readily hybridize, often flower simultaneously and are mostly bird-pollinated. Here we show that co-flowering aloes in a succulent thicket community in South Africa partition the fauna of flower-visiting birds. Aloe species with small amounts of concentrated nectar in long corolla tubes were pollinated primarily by long-billed sunbirds. These species co-flowered with species with large amounts of dilute nectar in short corolla tubes which were pollinated primarily by short-billed, generalist nectarivores. Aloe species which share pollinators tend to have divergent flowering times and differences in pollen placement on birds. Without these isolating barriers, genetic dissolution of sympatric Aloe species would be likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号