首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bergmann’s Rule (i.e., the tendency of body size to increase with decreasing environmental temperature) was originally explained by a mechanism that is unique to endotherms. Nevertheless, geographic variation of body size of ectotherms, including snakes, is increasingly studied, and some claim that the rule should apply to ectotherms, or to thermoregulating ectotherms. Such studies usually focus on assemblages or on species in a region, but mostly ignore species’ ecological and biological traits when seeking biogeographic patterns. We examined the relationship between environmental temperatures and body size of 146 Australian snake species. We examined this relationship while considering the effects of ecological traits (activity time and habitat use), climatic variables which are thought to influence snake body size, and shared ancestry. Our finding suggest that Bergmann’s Rule is not a valid generalization across species of Australian snakes. Furthermore, ecological traits greatly influence the relationship between snake body size and environmental temperature. Body size of fossorial species decreases with environmental temperature, whereas body size of nocturnal, surface active species increases. Body size of diurnal, surface active species is not related to environmental temperature. Our results indicate that lumping all species in a clade together is misleading, and that ecological traits profoundly affect the geographic variation of snake body size. Though environmental temperature generally does not exert a strong selective force on snake body size, this relationship differs for taxa exhibiting different ecological traits.  相似文献   

2.
Although changes in magnitude of single traits responding to selective agents have been studied intensively, little is known about selection shaping networks of traits and their patterns of covariation. However, this is central for our understanding of phenotypic evolution as traits are embedded in a multivariate environment with selection affecting a multitude of traits simultaneously rather than individually. Here, we investigate inter‐ and intraspecific patterns of trait integration (trait correlations) in the larval abdomen of dragonflies as a response to a change in predator selection. Species of the dragonfly genus Leucorrhinia underwent a larval habitat shift from predatory fish to predatory dragonfly‐dominated lakes with an associated relaxation in selection pressure from fish predation. Our results indicate that the habitat‐shift‐induced relaxed selection pressure caused phenotypic integration of abdominal traits to be reduced. Intraspecific findings matched patterns comparing species from both habitats with higher abdominal integration in response to predatory fish. This higher integration is probably a result of faster burst swimming speed. The abdomen holds the necessary morphological machinery to successfully evade predatory fish via burst swimming. Hence, abdominal traits have to function in a tight coordinated manner, as maladaptive variation and consequently nonoptimal burst swimming would cause increased mortality. In predatory dragonfly‐dominated lakes, no such strong link between burst swimming and mortality is present. Our findings highlight the importance of studying multivariate trait relationships as a response to selection for understanding patterns of phenotypic diversification.  相似文献   

3.
Quantitative genetic theory indicates that genetic covariance patterns among life history characters should have played an important role as genetic constraint in life history evolution. Highly positve (and negative) genetic correlations between larval development time (or larval growth rate) and adult size characters were detected by means of sib analysis for the small white butterfly Pieris rapae crucivora. The genetic associations suggested that evolution of developmental characteristics and adult phenotypic traits were constrained by pleiotropy. The positive genetic correlations between development time and adult body size may be compatible with the trade-off between them, but the negative genetic correlations between larval growth rate and adult body size are not predicted from theories of optimal energy allocation. That phenotypic correlations drastically differed from the genetic correlations indicates limitations of evolutionary inferences based only on phenotypic variation.  相似文献   

4.
K. Spitze 《Genetics》1993,135(2):367-374
Quantitative genetic analyses for body size and for life history characters within and among populations of Daphnia obtusa reveal substantial genetic variance at both hierarchical levels for all traits measured. Simultaneous allozymic analysis on the same population samples indicate a moderate degree of differentiation: G(ST) = 0.28. No associations between electrophoretic genotype and phenotypic characters were found, providing support for the null hypothesis that the allozymic variants are effectively neutral. Therefore, G(ST) can be used as the null hypothesis that neutral phenotypic evolution within populations led to the observed differentiation for the quantitative traits, which I call Q(ST). The results of this study provide evidence that natural selection has promoted diversification for body size among populations, and has impeded diversification for relative fitness. Analyses of population differentiation for clutch size, age at reproduction, and growth rate indicate that neutral phenotypic evolution cannot be excluded as the cause.  相似文献   

5.
The consequences of sex‐specific selection for patterns of diversification remain poorly known. Because male secondary sexual traits are typically costly to express, and both costs and benefits are likely to depend on ambient environment and individual condition, such traits may be expected to diversify via changes in reaction norms as well as the scaling of trait size with body size (static allometry). We investigated morphological diversification within two species of Australian neriid flies (Telostylinus angusticollis, Telostylinus lineolatus) by rearing larvae from several populations on larval diets varying sixfold in nutrient concentration. Mean body size varied among populations of T. angusticollis, but body size reaction norms did not vary within either species. However, we detected diversification of reaction norms for body shape in males and females within both species. Moreover, unlike females, males also diversified in static allometry slope and reaction norms for static allometry slope of sexual and nonsexual traits. Our findings reveal qualitative sex differences in patterns of morphological diversification, whereby shape–size relationships diversify extensively in males, but remain conserved in females despite extensive evolution of trait means. Our results highlight the importance of incorporating plasticity and allometry in studies of adaptation and diversification.  相似文献   

6.
Predator avoidance of noxious prey, aposematism and defensive mimicry are normally associated with bright, contrasting patterns and colours. However, noxious prey may be unable to evolve conspicuous coloration because of other selective constraints, such as the need to be inconspicuous to their own prey or to specialist predators. Many venomous snakes, particularly most vipers, display patterns that are apparently cryptic, but nevertheless highly characteristic, and appear to be mimicked by other, non-venomous snakes. However, predator avoidance of viper patterns has never been demonstrated experimentally. Here, the analysis of 813 avian attacks on 12,636 Plasticine snake models in the field shows that models bearing the characteristic zigzag band of the adder (Vipera berus) are attacked significantly less frequently than plain models. This suggests that predator avoidance of inconspicuously but characteristically patterned noxious prey is possible. Our findings emphasize the importance of mimicry in the ecological and morphological diversification of advanced snakes.  相似文献   

7.
Given the diverse nature of traits involved in territorial defence, they may respond to different selective pressures and then exhibit distinct patterns of evolution. These selective pressures also may cause territorial behaviour to be associated with environmental and morphological variables. Such associations, however, have mostly been studied at the intraspecific level, being phylogenetic analyses of territoriality in a broad taxonomic framework rare in the literature. We used the anuran subfamily Hylinae to test (1) whether two territorial-behaviour traits with different levels of aggression—territorial call and physical combat—are evolutionarily more labile than a morphological trait used in physical combat—the spine-shaped prepollex; (2) whether reproduction in lentic waters and phytotelmata, as well as resource scarcity, might favour the occurrence of territoriality; (3) if physical combat is more important than territorial call for the evolution of body size and sexual size dimorphism and (4) the relationships between territorial-behaviour traits and lineage diversification. We mainly used the literature to build two datasets with different levels of certainty. Territorial-behaviour traits exhibited intermediate levels of phylogenetic signal in Hylinae, whereas the phylogenetic signal for the presence of the spine-shaped prepollex was strong. We found support for the hypothesis that reproduction in lentic water favours the occurrence of territorial behaviour, because the expression of territorial-behaviour traits was more associated with reproduction in lentic than in lotic waters. Territorial-behaviour traits were not correlated with annual precipitation nor with habitat complexity. Body size and sexual size dimorphism were not correlated with the presence of territorial call nor with physical combat. We identified negative correlations between diversification rates and physical combat. Relationships of territorial call and physical combat with diversification rates suggest that these territorial behaviours influence evolutionary processes in different ways.  相似文献   

8.
Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.  相似文献   

9.
Inter and intra-population variation in morphological traits, such as body size and shape, provides important insights into the ecological importance of individual natural populations. The radiation of Diaptomid species (~400 species) has apparently produced little morphological differentiation other than those in secondary sexual characteristics, suggesting sexual, rather than ecological, selection has driven speciation. This evolutionary history suggests that species, and conspecific populations, would be ecologically redundant but recent work found contrasting ecosystem effects among both species and populations. This study provides the first quantification of shape variation among species, populations, and/or sexes (beyond taxonomic illustrations and body size measurements) to gain insight into the ecological differentiation of Diaptomids. Here we quantify the shape of five Diaptomid species (family Diaptomidae) from four populations each, using morphometric landmarks on the prosome, urosome, and antennae. We partition morphological variation among species, populations, and sexes, and test for phenotype-by-environment correlations to reveal possible functional consequences of shape variation. We found that intraspecific variation was 18-35% as large as interspecific variation across all measured traits. Interspecific variation in body size and relative antennae length, the two traits showing significant sexual dimorphism, were correlated with lake size and geographic location suggesting some niche differentiation between species. Observed relationships between intraspecific morphological variation and the environment suggest that divergent selection in contrasting lakes might contribute to shape differences among local populations, but confirming this requires further analyses. Our results show that although Diaptomid species differ in their reproductive traits, they also differ in other morphological traits that might indicate ecological differences among species and populations.  相似文献   

10.
All jumping spiders have unique, complex eyes with exceptional spatial acuity and some of the most elaborate vision-guided predatory strategies ever documented for any animal of their size. However, it is only recently that phylogenetic techniques have been used to reconstruct the relationships and key evolutionary events within the Salticidae. Here, we used data for 35 species and six genes (4.8 kb) for reconstructing the phylogenetic relationships between Spartaeinae, Lyssomaninae and Salticoida. We document a remarkable case of morphological convergence of eye ultrastructure in two clades with divergent predatory behaviour. We, furthermore, find evidence for a stepwise, gradual evolution of a complex predatory strategy. Divergent predatory behaviour ranges from cursorial hunting to building prey-catching webs and araneophagy with web invasion and aggressive mimicry. Web invasion and aggressive mimicry evolved once from an ancestral spartaeine that was already araneophagic and had no difficulty entering webs due to glue immunity. Web invasion and aggressive mimicry was lost once, in Paracyrba, which has replaced one highly specialized predation strategy with another (hunting mosquitoes). In contrast to the evolution of divergent behaviour, eyes with similarly high spatial acuity and ultrastructural design evolved convergently in the Salticoida and in Portia.  相似文献   

11.
JUAN J. NEGRO 《Ibis》2008,150(2):307-314
Two independent cases of visual mimicry involving snake-eating eagles as mimics and more powerful bird-eating hawks as models are proposed. One pair of species is formed by the sympatric West African Serpent-eagle Dryotriorchis spectabilis and Cassin's Hawk Eagle Spizaetus africanus (= Aquila africana ), inhabiting the tropical forests of the African Gulf of Guinea. The second case involves the Madagascar Serpent-eagle Eutriorchis astur and the Madagascar Goshawk Accipiter henstii , both sympatric and endemics of forests in Madagascar. Similarity in plumage colour and pattern as well as in body size and proportions are remarkable in both cases. The species mimicry pairs are in both cases not closely related phylogenetically and greatly differ in diet, making it unlikely that common ancestry or shared foraging strategies explain the resemblance in plumage coloration and pattern. Mimicry may have evolved because the mimic serpent-eagles obtain (the following hypotheses are not mutually exclusive): (1) a foraging advantage by deceiving their snake prey as they may not flee from bird-eating raptors such as the models, (2) a lowered predation or harassment by the models or other predators, and/or (3) reduced mobbing by small birds, which tend to avoid bird-eating raptors. Alternatively, the similarities in plumage described here may be the result of random convergence due to constraints in the evolution of plumage colours and patterns in diurnal raptors.  相似文献   

12.
Current concepts of sexual selection suggest that male reproductive success is determined by multiple sexual traits. As expression and production of multiple sexual traits are frequently associated with each other, positive or negative correlations among multiple sexual traits ensue. These relationships among traits associated with male reproductive success may be crucial in the evolution of male reproductive strategies. Here, we investigate phenotypic relationships among sexually selected traits in the armed bean bug Riptortus pedestris. In this insect, males with a larger body and weapon are more likely to win male–male competitions, and males with a larger weapon or higher courtship rate are more attractive to females. There was a significant positive correlation between body size and weapon size, whereas the courtship rate had significant negative correlations with body size and weapon size. Our results suggested that there was a phenotypic trade‐off between courtship rate and male morphology. In this insect, smaller males may make more effort in courtship behavior as an alternative mating tactic.  相似文献   

13.
Hybridization can generate novel phenotypes distinct from those of parental lineages, a phenomenon known as transgressive trait variation. Transgressive phenotypes might negatively or positively affect hybrid fitness, and increase available variation. Closely related species of Heliconius butterflies regularly produce hybrids in nature, and hybridization is thought to play a role in the diversification of novel wing colour patterns despite strong stabilizing selection due to interspecific mimicry. Here, we studied wing phenotypes in first‐ and second‐generation hybrids produced by controlled crosses between either two co‐mimetic species of Heliconius or between two nonmimetic species. We quantified wing size, shape and colour pattern variation and asked whether hybrids displayed transgressive wing phenotypes. Discrete traits underlain by major‐effect loci, such as the presence or absence of colour patches, generate novel phenotypes. For quantitative traits, such as wing shape or subtle colour pattern characters, hybrids only exceed the parental range in specific dimensions of the morphological space. Overall, our study addresses some of the challenges in defining and measuring phenotypic transgression for multivariate traits and our data suggest that the extent to which transgressive trait variation in hybrids contributes to phenotypic diversity depends on the complexity and the genetic architecture of the traits.  相似文献   

14.
Males and females share most of their genetic material yet often experience very different selection pressures. Some traits that are adaptive when expressed in males may therefore be maladaptive when expressed in females. Recent studies demonstrating negative correlations in fitness between parents and their opposite-sex progeny suggest that natural selection may favor a reduction in trait correlations between the sexes to partially mitigate intralocus sexual conflict. We studied sex-specific forms of selection acting in Anolis lizards in the Greater Antilles, a group for which the importance of natural selection has been well documented in species-level diversification, but for which less is known about sexual selection. Using the brown anole (Anolis sagrei), we measured fitness-related variation in morphology (body size), and variation in two traits reflecting whole animal physiological condition: running endurance and immune function. Correlations between body size and physiological traits were opposite between males and females and the form of natural selection acting on physiological traits significantly differed between the sexes. Moreover, physiological traits in progeny were correlated with the body-size of their sires, but correlations were null or even negative between parents and their opposite-sex progeny. Although results based on phenotypic and genetic correlations, as well as the action of natural selection, suggest the potential for intralocus sexual conflict, females used sire body size as a cue to sort sperm for the production of either sons or daughters. Our results suggest that intralocus sexual conflict may be at least partly resolved through post-copulatory sperm choice in A. sagrei.  相似文献   

15.
Zones of secondary contact between closely related species provide a rare opportunity to examine evidence of evolutionary processes that reinforce species boundaries and/or promote diversification. Here, we report on genetic and morphological variation in two sister species of woodrats, Neotoma fuscipes and N. macrotis, across a 30-km transition zone in the Sierra Nevada of California. We assessed whether these lineages readily hybridize, and whether their morphology suggests ecological interactions favoring phenotypic diversification. We combined measurements of body size and 11 craniodental traits from nine populations with genetic data to examine patterns of variation within and between species. We used phylogenetic autocorrelation methods to estimate the degree to which phenotypic variation in our dataset arose from independent evolution within populations versus phylogenetic history. Although no current sympatry or hybridization was evident, craniodental morphology diverged in both lineages near their distributional limits, whereas body size converged. The shift in craniodental morphology arose independently within populations whereas body size retained a strong phylogenetic signal, yet both patterns are consistent with expectations of phenotypic change based on different models of resource competition. Our findings demonstrate the importance of examining a suite of morphological traits across contact zones to provide a more complete picture of potential ecological interactions: competition may drive both diversification and convergence in different phenotypic traits.  相似文献   

16.
Determinants of geographic variation in body size are often poorly understood, especially in organisms with complex life cycles. We examined patterns of adult body size and metamorphic traits variation in Iberian spadefoot toad ( Pelobates cultripes ) populations, which exhibit an extreme reduction in adult body size, 71.6% reduction in body mass, within just about 30 km at south-western Spain. We hypothesized that size at and time to metamorphosis would be predictive of the spatial pattern observed in adult body size. Larvae from eight populations were raised in a common garden experiment at two different larval densities that allow to differentiate whether population divergence was genetically based or was simply a reflection of environmental variation and, in addition, whether this population divergence was modulated by differing crowding larval environments. Larger adult size populations had higher larval growth rates, attaining larger sizes at metamorphosis, and exhibited higher survival than smaller-sized populations at both densities, although accentuated at a low larval density. These population differences appeared to be consistent once embryo size variation was controlled for, suggesting that this phenotypic divergence is not due to maternal effects. Our results suggest considerable genetic differentiation in metamorphic traits that parallels and may be a causal determinant of geographic variation in adult body size.  相似文献   

17.
Aim To examine relationships between life‐history traits, ecological and chorological characteristics of woody plant species and patterns of genetic differentiation among populations as assessed by chloroplast DNA (cpDNA) markers, and to compare them with patterns previously described from nuclear markers. Location Europe. Methods Data on cpDNA variation were compiled for 29 temperate European broad‐leaved tree and shrub species. Six qualitative and three quantitative characters of the species were tested for their relationship with two parameters of genetic population differentiation (GST and NST). Both direct species comparisons and phylogenetically independent contrast analyses were performed. Results When the phylogeny was not taken into account, five characters were significantly related to levels of population differentiation. The relationship disappeared in all but two cases (distribution type and seed mass) when analyses controlled for phylogenetic relationships among species. Main conclusions The correlation between distribution type (boreal‐temperate or temperate) and cpDNA differentiation of temperate European woody plant species suggests that their Quaternary history, in particular the location and isolation of their glacial refugia, is an important determinant of their present‐day level of genetic structure. By contrast, the relationship between life‐history traits and genetic differentiation at maternally inherited markers is weaker, especially when phylogenetic effects are controlled for.  相似文献   

18.
Abstract Genetic trade‐offs for host plant use are hypothesized to facilitate the diversification of insect populations through specialization to their host plants. Previous studies mainly estimated the architecture of genetic variances and covariances in herbivorous species with discrete and limited types of host species. In contrast to herbivores, the relative abundance of resources for predatory species fluctuates in time and space, causing a more unpredictable encounter with prey species. The ecological characteristics of resource use might result in a differential mode of selection for herbivorous and predatory species, which could be reflected in a differential genetic architecture of developmental traits such as the duration of larval stage (henceforth referred to as larval period) and size of pupa (measured as pupal weight). This paper presents results from a study on the genetic architecture of larval period and pupal mass of an aphidophagous ladybird beetle, Harmonia axyridis Pallas, in different resource environments. Beetles reared on Acyrthosiphon pisum (Harris) showed a shorter developmental period and a heavier pupal mass than their siblings on Aphis craccivora Koch or on artificial diet, while the average larval period and pupal mass on A. craccivora and the artificial diet were similar. Further analyses of the genetic architecture suggest that the developmental traits on the two aphid species are genetically correlated, while there are only weak or no genetic correlations between these two traits on the two aphid preys and the artificial diet. Thus, the results suggest that the patterns of genotypic relationships between developmental traits differ from the phenotypic ones. The effects of past selection on the genetic architecture and the possible cause of the genetic correlation are discussed, as well as consequences for mass rearing for biological control.  相似文献   

19.
Ejaculates function as an integrated unit to ensure male fertility and paternity, can have a complex structure, and can experience multiple episodes of selection. Current studies on the evolution of ejaculates typically focus on phenotypic variation in sperm number, size, or related traits such as testes size as adaptations to postcopulatory male-male competition. However, the evolution of the integrated nature of ejaculate structure and function depends on genetic variation in and covariation between the component parts. Here we report a quantitative genetic study of the components of the ejaculate of the cockroach Nauphoeta cinerea, including those we know to experience postcopulatory sexual selection, in the context of functional integration of ejaculate characters. We use the patterns of genetic variation and covariation to infer how the integration of the functions of the ejaculate constrain and shape its evolution. Ejaculate components were highly variable, showed significant additive genetic variance, and moderate to high evolvability. The level of genetic variation in these characters, despite strong directional or truncating selection, may reflect the integration of multiple episodes of selection that occur in N. cinerea. There were few significant phenotypic correlations, but all the genetic correlations among ejaculate characters were significantly different from zero. The patterns of genetic variation and covariation suggest that there are important trade-offs among individual traits of the ejaculate and that evolution of ejaculate characteristics will not proceed unconstrained. Fully describing the genetic relationships among traits that perform as an integrated unit helps us understand how functional relationships constrain or facilitate the evolution of the complex structure that is the ejaculate.  相似文献   

20.
Quantitative genetic models of evolution rely on the genetic variance-covariance matrix to predict the phenotypic response to selection. Both prospective and retrospective studies of phenotypic evolution across generations rely on assumptions about the constancy of patterns of genetic covariance through time. In the absence of robust theoretical predictions about the stability of genetic covariances, this assumption must be tested with empirical comparisons of genetic parameters among populations and species. Genetic variance-covariance matrices were estimated for a suite of antipredator traits in two populations of the northwestern garter snake, Thamnophis ordinoides. The characters studied include color pattern and antipredator behaviors that interact to facilitate escape from predators. Significant heritabilities for all traits were detected in both populations. Genetic correlations and covariances were found among behaviors in both populations and between color pattern and behavior in one of the populations. Phenotypic means differed among populations, but pairwise comparisons revealed no heterogeneity of genetic parameters between the populations. The structure of the genetic variance-covariance matrix has apparently not changed significantly during the divergence of these two populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号