首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Condition-dependence is a central but contentious tenet of evolutionary theories on the maintenance of ornamental traits, and this is particularly true for structural plumage colour. By providing diets of different nutritional quality to moulting male and female blue tits, we experimentally manipulated general condition within the natural range, avoiding deprivation or stressful treatments. We measured reflectance of the structural-coloured UV/blue crown, a sexually selected trait in males, and the white cheek, a nonpigmented structural colour, directly after moult and again during the following spring mating season. We employed a variety of colour indices, based on spectral shape and avian visual models but, despite significant variation in condition and coloration, found no evidence for condition-dependence of UV/blue or white plumage colour during either season. These and previously published results suggest that structural colour might be sensitive to stress, rather than reduced body condition, during moult.  相似文献   

2.
Understanding the causes of variation in feather colour in free-living migratory birds has been challenging owing to our inability to track individuals during the moulting period when colours are acquired. Using stable-hydrogen isotopes to estimate moulting locality, we show that the carotenoid-based yellow-orange colour of American redstart (Setophaga ruticilla) tail feathers sampled on the wintering grounds in Central America and the Caribbean is related to the location where feathers were grown the previous season across North America. Males that moulted at southerly latitudes were more likely to grow yellowish feathers compared with males that moulted more orange-red feathers further north. Independent samples obtained on both the breeding and the wintering grounds showed that red chroma-an index of carotenoid content-was not related to the mean daily feather growth rate, suggesting that condition during moult did not influence feather colour. Thus, our results support the hypothesis that feather colour is influenced by ecological conditions at the locations where the birds moulted. We suggest that these colour signals may be influenced by geographical variation in diet related to the availability of carotenoids.  相似文献   

3.
Moult speed constrains the expression of a carotenoid-based sexual ornament   总被引:1,自引:0,他引:1  
We investigated the effect of moult speed on the expression of a sexually selected, carotenoid-based feather ornament in the rock sparrow (Petronia petronia). We experimentally accelerated the moult speed of a group of birds by exposing them to a rapidly decreasing photoperiod and compared the area and the spectral characteristics of their ornaments with those of control birds. Birds with accelerated moulting rate showed a smaller yellow patch with lower yellow reflectance compared to their slow-moulting counterparts. Considering that the time available for moulting is usually constrained between the end of the breeding season and migration or wintering, carotenoid feather ornaments, whose expression is mediated by moult speed, may convey long term information about an individual's condition, potentially encompassing the previous breeding season. Furthermore, the observed trade-off between moult speed and ornament expression may represent a previously unrecognized selective advantage for early breeding birds.  相似文献   

4.
Alistair Dawson 《Ibis》2004,146(3):493-500
In many species of birds there is a close relationship between the end of breeding and the start of moult. Late-breeding birds therefore often start to moult late, but then moult more rapidly. This is an adaptive mechanism mediated by decreasing day lengths that allows late-breeding birds to complete moult in time. This study asked how these birds complete moult of the primary feathers more rapidly, and the consequences of this on the mass of primary feathers. Common Starlings Sturnus vulgaris were induced to moult rapidly in one of two ways. In the first experiment, one group was exposed to artificially decreasing photoperiods from the start of moult, whereas the control group remained on a constant long photoperiod. The second experiment was a more realistic simulation. Two groups were allowed to moult in an outdoor aviary. One group started to moult at the normal time. In the other, the start of moult was delayed by 3 weeks with an implant of testosterone. The duration of moult was significantly reduced in both the group experiencing artificially decreasing photoperiods and the group in which the start of moult was delayed. The faster moult rate was achieved by moulting more feathers concurrently. The rate of increase in length of each of the primary feathers, and their final length, did not differ between groups. The rate at which total new primary feather mass was accumulated was greater in more rapidly moulting birds, but this was insufficient to compensate for the greater numbers of feathers being grown concurrently. Consequently, the rate of increase in mass of individual feathers, and the final feather mass, were less in the rapidly moulting birds. A 3-week delay in the start of moult is not an unrealistic scenario. That this caused a measurable decrease in feather mass suggests that late-breeding birds are indeed likely to suffer a real decrease in the quality of plumage grown during the subsequent moult.  相似文献   

5.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

6.
The bright colours of parrots are caused by psittacofulvin pigments, which appear unique to this Order, and by structural colours. We measured red (psittacofulvin), green (mixed) and blue (structural) colours of wild burrowing parrots Cyanoliseus patagonus of northeastern Patagonia, Argentina, and measured nestlings regularly to obtain data on breeding success and nestling growth. As adult feathers are moulted outside the breeding season, adult body condition could not be measured directly during feather growth, and climatic conditions were used as an indirect parameter. The colony of burrowing parrots is surrounded by Monte steppe habitat, the breeding success has been shown to depend strongly on the climatic patterns. The area experienced a drought with very poor breeding success as well as a year of above‐average precipitation during the study period, serving as a natural experiment. We thus analysed the variability of colouration within the population among and within breeding seasons. We observed strong inter‐annual differences in nestling and adult colouration. Nestlings grew blue feathers with lower achromatic brightness during better conditions, and when controlling for year effects, nestlings with higher mass and from more successful families also had blue feathers with lower achromatic brightness. Adult blue feathers showed the same trend, with lower achromatic brightness in the moult following breeding seasons of better conditions. In contrast, during better conditions, adults grew red feathers with higher achromatic brightness and the colour hue was also affected, and the hue of the red region of nestlings varied with the hatching order. The colour of all three regions of nestlings varied between nests, and the colour of the red region of adult males positively correlated with breeding success (clutch size, brood size). In summary, the present data suggest that environmental conditions contribute to variability in both structural and the psittacofulvin‐based colours of wild burrowing parrots.  相似文献   

7.
Moult, comprising the growth or replacement of feathers in birds, is an energetically demanding process. As a result, in many species, the extent of the post‐juvenile moult can vary substantially. However, the reasons underlying this variation remain poorly understood, and the potential life‐history consequences of variation in moult extent are even less clear. In the present study, we aimed to use individual‐specific data to identify factors affecting the extent of the post‐juvenile moult in a population of over 2500 blue tits Cyanistes caeruleus Linnaeus 1758, and to assess the consequences of individual variation in moult extent on reproduction in the first year of life. There was a substantial sex difference in post‐juvenile moult extent, with males moulting more extensively than females. Putative immigrant birds had moulted on average less than those born locally. However, there was little evidence of carry‐over effects of the natal environment on moult extent because we found no relationship between moult extent and fledging date or nestling mass. Evidence that moult extent, and hence feather brightness, affected subsequent reproductive success was limited. Moult extent had no effect on recruitment in males, although female recruits had moulted significantly less than nonbreeders. Because it was not influenced by features of the natal environment, moult extent may not be an honest signal of individual quality in C. caeruleus. As a result, the potential consequences of variation in moult extent for fitness are likely to be small.  相似文献   

8.
Seabirds are mostly thought to moult during the inter‐breeding period and the isotopic values of their feathers are often therefore assumed to relate to their assimilated diet during such periods. We observed Brown Skuas Stercorarius antarcticus lonnbergi and South Polar Skuas Stercorarius maccormicki moulting on a breeding site at King George Island, Antarctica. This raises concerns about the reliability of using stable isotopes in feathers to infer feeding localities of birds during the inter‐breeding period. We analysed the δ13C and δ15N values of growing and fully grown body feathers collected from the same individuals. For both species, δ13C values of growing feathers indicated feeding areas in the Antarctic zone (breeding grounds), whereas most fully grown feathers (100% for South Polar Skuas and 93.3% for Brown Skuas) could be assigned to northern latitudes (non‐breeding grounds). However, a few fully grown body feathers of Brown Skuas (6.7% of the feathers, belonging to two birds) showed isotopic values that indicated moult in the Antarctic zone. As the growth period of those feathers was unknown, they could not be used with confidence to depict the foraging behaviour of the birds during the non‐breeding period. Although precautions must be taken when inferring dietary information from feathers in seabirds where the moulting pattern is unknown, this study shows that if the development stage of a feather (growing/fully grown) is identified, then dietary information from both breeding and non‐breeding seasons can be obtained on the same individual birds.  相似文献   

9.
Migratory birds have less time for moulting than sedentary birds, which may force them to produce their feathers faster at the expense of reducing feather quality. However, the effects of migration on the trade-off between moult speed and plumage quality remain to be studied in natural populations. We analysed the relationship between growth rate and quality of individual feathers, taking advantage of natural variation between migratory and sedentary populations of blackcaps Sylvia atricapilla . As predicted by life-history theory, individual blackcaps showed variable individual quality, which was revealed by positive correlations between feather growth rate and feather mass within populations. However, migrants grew up their feathers faster, producing lighter feathers than sedentary blackcaps. These results support the idea that feather growth rate and feather quality are traded against each other in blackcaps. Such a trade-off is apparently caused by different selection associated to migratory and sedentary life styles, which opens new insights into the diversification of moult patterns in birds.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 98–105.  相似文献   

10.
Sexual-selection theory assumes that there are costs associated with ornamental plumage coloration. While pigment-based ornaments have repeatedly been shown to be condition dependent, this has been more difficult to demonstrate for structural colours. We present evidence for condition dependence of both types of plumage colour in nestling blue tits (Parus caeruleus). Using reflectance spectrometry, we show that blue tit nestlings are sexually dichromatic, with males having more chromatic (more 'saturated') and ultraviolet (UV)-shifted tail coloration and more chromatic yellow breast coloration. The sexual dimorphism in nestling tail coloration is qualitatively similar to that of chick-feeding adults from the same population. By contrast, the breast plumage of adult birds is not sexually dichromatic in terms of chroma. In nestlings, the chroma of both tail and breast feathers is positively associated with condition (body mass on day 14). The UV/blue hue of the tail feathers is influenced by paternally inherited genes, as indicated by a maternal half-sibling comparison. We conclude that the expression of both carotenoid-based and structural coloration seems to be condition dependent in blue tit nestlings, and that there are additional genetic effects on the hue of the UV/blue tail feathers. The signalling or other functions of sexual dichromatism in nestlings remain obscure. Our study shows that nestling blue tits are suitable model organisms for the study of ontogenetic costs and heritability of both carotenoid-based and structural colour in birds.  相似文献   

11.
THE MOULT OF THE BULLFINCH PYRRHULA PYRRHULA   总被引:1,自引:0,他引:1  
I. Newton 《Ibis》1966,108(1):41-67
The distribution of feather tracts and their sequence of moult in the Bullfinch is described. The adult post-nuptial moult, which is complete, lasted 10–12 weeks, and the post-juvenile moult, which is partial, 7–9 weeks. Adult moult began with the shedding of the first (innermost) primary and ended with the replacement of the last. Variations in the rate of moult in the flight feathers were mainly achieved, not by changes in the growth rates of individual feathers, but in the number of feathers growing concurrently. The primaries were shed more slowly, and the onset of body moult delayed, in birds which were still feeding late young. In 1962, the onset of moult in the adults was spread over 11 weeks from thc end of July to the beginning of October, and in the two following years over the six weeks, from the end of July to the beginning of September. The onset of moult was delayed by late breeding, which itself occurred in response to a comparative abundance of food in late summer, markedly in 1962. In all years, the first juveniles to moult started at the end of July, and the last, three weeks after the latest adults. Juveniles moulting late in the season retained more juvenile feathers than those moulting earlier. During moult, adult and juvenile Bullfinches produce feathers equivalent to 40% and 33% respectively of their dry weights. In both, for much of the moult, an average of nearly 40 mgm. of feather material—some 0.6% of their dry-weight–is laid down each day. The remiges of the adult comprise only a seventh of the weight of the entire plumage, and it is suggested that their protracted moult results not so much from their energy requirements, as from the need to maintain efficient flight. Variation in the rate of moult in the remiges was much less pronounced than in the body feathers. Bullfinches were less active during moult than at other times of the year. The weights of both adults and juveniles increased during moult. The food during the moult period is described. In all years, most Bullfinches finished moulting just before food became scarce, even though this occurred at different times in different years. In one year, adults moulting latest in the season probably survived less well than those moulting earlier; the same was apparently true of the juveniles in all years. The timing of moult in the Bullfinch, and the factors initiating it, are discussed in relation to the breeding season and foodsupply near Oxford.  相似文献   

12.
Environmental constraints are strong in migratory species that breed in the Arctic. In addition to breeding, Anatidae have to renew all their flight feathers during the short arctic summer. We examine how temporal constraints and climate affect the phenology of flight feather moult in the greater snow goose Chen caerulescens atlantica, a High Arctic nesting species. We used a database of 1412 moulting adult females measured over 15 yr on Bylot Island, Nunavut. Ninth (9th) primary length was used to determine the moult stage and speed of feather growth. We found a positive relationship between median annual hatching and moult initiation dates and the slope did not differ from 1. The interval between hatching and moult initiation was thus rather fixed and geese did not initiate moult earlier when reproductive phenology was delayed. Nonetheless, there was no relationship between median hatching date and the date at which birds regained flight capacity, suggesting that date of end of moult is independent of the reproductive phenology. There was a trend for an increase in the speed of flight feather growth in years with delayed hatching date. This is the most likely mechanism that could explain moult phenology adjustment in this species. Finally, we found a positive relationship between 9th primary length (corrected for inter‐annual variations) and body condition, suggesting a delay in moulting for individuals in poor condition. These results suggest that moult plasticity is primarily governed by variations in feather growth speed. This phenotypic plasticity could be necessary to complete flight feather renewal before the end of the arctic summer, independently of reproductive phenology and spring environmental conditions. Our novel results suggest possible phenological adjustments through moult speed, which was considered constant in geese until now.  相似文献   

13.
Phenotypic flexibility during moult has never been explored in austral nomadic ducks. We investigated whether the body condition, organ (pectoral muscle, gizzard, liver and heart) mass and flight‐feather growth Egyptian geese Alopochen aegyptiaca in southern Africa show phenotypic flexibility over their 53‐day period of flightless moult. Changes in body mass and condition were examined in Egyptian geese caught at Barberspan and Strandfontein in South Africa. Mean daily change in primary feather length was calculated for moulting geese and birds were dissected for pectoral muscle and internal organ assessment. Mean body mass and condition varied significantly during moult. Body mass and condition started to decrease soon after flight feathers were dropped and continued to do so until the new feathers were at least two‐thirds grown, after which birds started to regain body mass and condition. Non‐moulting geese had large pectoral muscles, accounting for at least 26% of total body mass. Once moult started, pectoral muscle mass decreased and continued to do so until the flight feathers were at least one‐third grown, after which pectoral muscle mass started to increase. The regeneration of pectoral muscles during moult started before birds started to gain overall body mass. Gizzard mass started to increase soon after the onset of moult, reaching a maximum when the flight feathers were two‐thirds grown, after which gizzard mass again decreased. Liver mass increased significantly as moult progressed, but heart mass remained constant throughout moult. Flight feather growth was initially rapid, but slowed towards the completion of moult. Our results show that Egyptian geese exhibit a significant level of phenotypic flexibility when they moult. We interpret the phenotypic changes that we observed as an adaptive strategy to minimize the duration of the flightless period. Moulting Egyptian geese in South Africa undergo more substantial phenotypic changes than those reported for ducks in the northern hemisphere.  相似文献   

14.
From August to December, thousands of Black‐necked Grebes Podiceps nigricollis concentrate during the flightless moult period in salt ponds in the Odiel Marshes, southern Spain, where they feed on the brine shrimp Artemia parthenogenetica. We predicted that because Black‐necked Grebes moulted in a food‐rich, predator‐free environment, there would be no net loss of body mass caused by the use of fat stored to meet energy needs during remigial feather replacement (as is the case for some other diving waterbirds). However, because the food resource disappears in winter, we predicted that grebes moulting later in the season would put on more body mass prior to moult because of the increasing risk of an Artemia population crash before the moult period is completed. Body mass determinations of thousands of birds captured during 2000–2010 showed that grebes in active wing‐moult showed greater mass with date of capture. Early‐moulting grebes were significantly lighter at all stages than late‐moulting birds. Grebes captured with new feathers post‐moult were significantly lighter than those in moult. This is the first study to support the hypothesis that individual waterbirds adopt different strategies in body mass accumulation according to timing of moult: early‐season grebes were able to acquire an excess of energy over expenditure and accumulate fat stores while moulting. Delayed moulters acquired greater fat stores in advance of moult to contribute to energy expenditure for feather replacement and retained extra stores later, most likely as a bet hedge against the increasing probability of failing food supply and higher thermoregulatory demands late in the season. An alternative hypothesis, that mass change is affected by a trophically transmitted cestode using brine shrimps as an intermediate host and Black‐necked Grebes as final host, was not supported by the data.  相似文献   

15.
Moult is a costly but necessary process in avian life, which displays two main temporal patterns within the annual cycle of birds (summer and winter moult). Timing of moult can affect its duration and consequently the amount of material invested in feathers, which could have a considerable influence on feather structure and functionality. In this study, we used two complementary approaches to test whether moult duration and feather mass vary in relation to the timing of moult. Firstly, we conducted a comparative study between a sample of long‐distance migratory passerine species which differ in moult pattern. Secondly, we took advantage of the willow warbler's Phylloscopus trochilus biannual moult, for which it is well‐known that winter moult takes longer than summer moult, to assess between‐moult variation in feather mass. Our comparative analysis showed that summer moulting species performed significantly shorter moults than winter moulters. We also detected that feathers produced in winter were comparatively heavier than those produced in summer, both in between‐species comparison and between moults of the willow warbler. These results suggest the existence of a trade‐off between moult speed and feather mass mediated by timing of moult, which could contribute to explain the diversity of moult patterns in passerines.  相似文献   

16.
Some theories about moult strategies of Palaearctic passerine migrants assume that birds adapt timing of moult to environmental conditions such as rainfall on their African wintering grounds. Species wintering in the northern tropics should limit moult to the period shortly after their arrival at the end of the rainy season. Passerine migrants wintering in West Africa should also moult more rapidly compared to related species or conspecific populations that moult elsewhere. We investigated the moult of melodious warblers Hippolais polyglotta, willow warblers Phylloscopus trochilus and pied flycatchers Ficedula hypoleuca wintering in Comoé National Park, Ivory Coast, between October 1994 and April 1998. In contrast to previous studies we did not restrict our analyses to moult of flight feathers but also included moult of body feathers. The results differed partially from the general assumptions of previous authors. Melodious warblers moulted twice: a complete moult shortly after their arrival, and a moult of body feathers and in some cases some tertials and secondaries in spring. Willow warblers moulting flight feathers were found between December and March with the majority moulting in January and February. Primary moult was not faster compared to populations moulting in central Africa and South Africa. Body feather moult varied strongly among individuals with birds in heavy moult between December and April. Pied flycatchers moulted body feathers and tertials between January and April. Birds with growing feathers were found throughout the whole period including the entire dry season. Moult strategies are thus not readily related to a few environmental factors in general and our results show that factors other than mere resource availability during certain times on the wintering grounds are likely to govern the timing of moult.Communicated by F.Bairlein  相似文献   

17.
Several animal species have been shown to use phenotypic traitsto assess the competitive ability of opponents and adjust theiraggressiveness depending on the likelihood to win the contest.In birds, these phenotypic traits usually involve patches ofcolored feathers. The benefit to harbor honest signals of malequality is the avoidance of wasteful aggressive interactions.Recent work has shown that ultraviolet (UV) plumage reflectanceis an important signal used by females during mate choice. Surprisingly,however, the role of UV signaling on intrasexual selection hasbeen neglected. In the present study, we aimed to test whetherUV reflectance of crown feathers was used as a signal of malecompetitive ability during male-male interactions. Breedingmale blue tits (Parus caeruleus ultramarinus) were exposed duringthe female egg-laying period to blue tit taxidermic mounts witheither control or reduced UV reflectance of crown feathers.In agreement with the prediction that UV reflectance advertisesmale quality, we found that breeding blue tits behaved lessaggressively toward the UV-reduced decoy. To our knowledge,this is the first experimental evidence suggesting a role forUV signaling on intrasexual selection.  相似文献   

18.
I. NEWTON  & P. ROTHERY 《Ibis》2005,147(4):667-679
Moult was studied in 1 year among Greenfinches trapped in a garden in east‐central England. Over the period June–December 2003, 333 captures of 179 individual adults provided information on breeding condition, moult, body weight, sex and age (yearling or older adult, equivalent to birds in their second or later calendar years, respectively). About 95% of all birds (sex and age groups combined) started primary feather moult from 2 July to 14 August, and finished from 10 October to 22 November. The mean date of moult onset in the population as a whole was 24 July. On average, males began 8 days before females, and yearlings began 6 days before older birds. The mean duration of moult was 100 days, whether the figure was calculated for the population as a whole or just for the 36 individual birds that were caught more than once during moult. However, moult rate was slightly slower, and moult duration slightly longer, in yearlings than in older adults of both sexes. No evidence was found for any systematic relationship between moult onset date and rate (duration). Breeding and moult overlapped by up to 5 weeks or more in individual birds, and some birds probably started to moult as early as the incubation stage of their last clutch of the season. The cloacal protuberance (taken as indicative of breeding condition) had regressed in all males by the time the fifth primary was shed, and the brood patch had regressed and re‐feathered in all females by the time the fourth primary was shed. The bulk of feather replacement in the secondary, tail and body tracts occurred in the second half of primary moult, and after cloacal protuberances and brood patches were completely regressed. In all birds examined near the end of primary moult the secondaries were still growing, and would have continued growth for up to another 19 days or more, extending the end of the moulting season into December. Body mass during moult was affected significantly by sex and age, as well as by time of day, amount of food in gullet, reproductive condition and date. No firm evidence emerged that body mass was affected by moult stage, after allowing for effects of date and other variables (although there was a non‐significant negative relationship between moult stage and body mass in males). In the population as a whole, the breeding season (from first egg‐laying to independence of last young) was spread over 21 weeks and moult over 24 weeks. With an overlap between the two events at the population level of up to 9 weeks, the two processes together took up to 36 weeks, some 69% of the year.  相似文献   

19.
The determinants and function of pigmentation of feathers and other tissues have been the focus of a large number of studies, particularly with respect to socio‐sexual communication. However, many birds exhibit depigmented white spots or bars on their feathers whose function is poorly understood. Here we assess whether white feather spots reflect phenotypic condition at the time of moult by investigating the covariation between spot size or shape and condition‐dependent feather growth rate, as gauged by width of the growth bars on the tail feathers of Barn Swallows. We found that feathers with higher growth rates had larger, less rounded white spots. In addition, variance in spot perimeter for a given spot area was larger in males than in females. This study is the first to provide evidence that features of white markings on feathers directly reflect body condition at the time of moult and can therefore reliably signal phenotypic quality in the context of socio‐sexual communication. In addition, the study highlights the potential communication function of the shape and not just the size of colour signals.  相似文献   

20.
van den Brink, B., Bijlsma, R.G. & van der Have, T.M. 2000. European swallows Hirundo rustica in Botswana during three non-breeding seasons: the effects of rainfall on moult. Ostrich: 71 (1): 198–204.

The rate of moult of European Swallows spending the non-breeding season in Botswana was studied during December-January of 1992/93,1993/94 and 1994/95 to investigate the effects of variability in rainfall and roosting habitat availability. In January 1994, 2–3 million European Swallows were counted at a traditional roost along the Boteti River. The rate of moult was relatively slow, about one feather (primary, secondary or tail feather) was replaced every two weeks in both adults and juveniles. The speed of moult in juveniles was generally lower than in adults, in particular of secondaries and tail feathers. Moulting rate of both primaries and tail feathers was lowest in 1994/95 during a period of drought and coincided with the almost complete destruction of roosting habitat. In 1992/93, moulting rate was highest when rainfall was moderate and roosting habitat abundant. Moulting rate was intermediate in 1993/94 when rainfall was frequent but roosting habitat reduced because of the low water level in the Boteti River. The combined effect of reduced food availability during droughts and higher densities and longer foraging flights when roosting habitat is scarce might explain the annual variation in moulting rate. From the second week of January onwards many adults started moulting the outermost tail feather before the penultimate feathers. This phenomenon could indicate the importance of long tail streamers in aerial manoeuvring when foraging during the return migration to the breeding grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号