首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2021,120(21):4722-4737
In this work, we propose a generalized Langevin equation-based model to describe the lateral diffusion of a protein in a lipid bilayer. The memory kernel is represented in terms of a viscous (instantaneous) and an elastic (noninstantaneous) component modeled through a Dirac δ function and a three-parameter Mittag-Leffler type function, respectively. By imposing a specific relationship between the parameters of the three-parameter Mittag-Leffler function, the different dynamical regimes—namely ballistic, subdiffusive, and Brownian, as well as the crossover from one regime to another—are retrieved. Within this approach, the transition time from the ballistic to the subdiffusive regime and the spectrum of relaxation times underlying the transition from the subdiffusive to the Brownian regime are given. The reliability of the model is tested by comparing the mean-square displacement derived in the framework of this model and the mean-square displacement of a protein diffusing in a membrane calculated through molecular dynamics simulations.  相似文献   

2.
We present a systematic statistical analysis of the recently measured individual trajectories of fluorescently labeled telomeres in the nucleus of living human cells. The experiments were performed in the U2OS cancer cell line. We propose an algorithm for identification of the telomere motion. By expanding the previously published data set, we are able to explore the dynamics in six time orders, a task not possible earlier. As a result, we establish a rigorous mathematical characterization of the stochastic process and identify the basic mathematical mechanisms behind the telomere motion. We find that the increments of the motion are stationary, Gaussian, ergodic, and even more chaotic—mixing. Moreover, the obtained memory parameter estimates, as well as the ensemble average mean square displacement reveal subdiffusive behavior at all time spans. All these findings statistically prove a fractional Brownian motion for the telomere trajectories, which is confirmed by a generalized p-variation test. Taking into account the biophysical nature of telomeres as monomers in the chromatin chain, we suggest polymer dynamics as a sufficient framework for their motion with no influence of other models. In addition, these results shed light on other studies of telomere motion and the alternative telomere lengthening mechanism. We hope that identification of these mechanisms will allow the development of a proper physical and biological model for telomere subdynamics. This array of tests can be easily implemented to other data sets to enable quick and accurate analysis of their statistical characteristics.  相似文献   

3.
Protein lateral mobility in cell membranes is generally measured using fluorescence photobleaching recovery (FPR). Since the development of this technique, the data have been interpreted by assuming free Brownian diffusion of cell surface receptors in two dimensions, an interpretation that requires that a subset of the diffusing species remains immobile. The origin of this so-called immobile fraction remains a mystery. In FPR, the motions of thousands of particles are inherently averaged, inevitably masking the details of individual motions. Recently, tracking of individual cell surface receptors has identified several distinct types of motion (Gross and Webb, 1988; Ghosh and Webb, 1988, 1990, 1994; Kusumi et al. 1993; Qian et al. 1991; Slattery, 1995), thereby calling into question the classical interpretation of FPR data as free Brownian motion of a limited mobile fraction. We have measured the motion of fluorescently labeled immunoglobulin E complexed to high affinity receptors (Fc epsilon RI) on rat basophilic leukemia cells using both single particle tracking and FPR. As in previous studies, our tracking results show that individual receptors may diffuse freely, or may exhibit restricted, time-dependent (anomalous) diffusion. Accordingly, we have analyzed FPR data by a new model to take this varied motion into account, and we show that the immobile fraction may be due to particles moving with the anomalous subdiffusion associated with restricted lateral mobility. Anomalous subdiffusion denotes random molecular motion in which the mean square displacements grow as a power law in time with a fractional positive exponent less than one. These findings call for a new model of cell membrane structure.  相似文献   

4.
Observation and tracking of fluorescently labeled molecules and particles in living cells reveals detailed information about intracellular processes on the molecular level. Whereas light microscopic particle observation is usually limited to two-dimensional projections of short trajectory segments, we report here image-based real-time three-dimensional single particle tracking in an active feedback loop with single molecule sensitivity. We tracked particles carrying only 1–3 fluorophores deep inside living tissue with high spatio-temporal resolution. Using this approach, we succeeded to acquire trajectories containing several hundred localizations. We present statistical methods to find significant deviations from random Brownian motion in such trajectories. The analysis allowed us to directly observe transitions in the mobility of ribosomal (r)RNA and Balbiani ring (BR) messenger (m)RNA particles in living Chironomus tentans salivary gland cell nuclei. We found that BR mRNA particles displayed phases of reduced mobility, while rRNA particles showed distinct binding events in and near nucleoli.  相似文献   

5.
Intracellular transport is a complex interplay of ballistic transport along filaments and of diffusive motion, reliably delivering material and allowing for cell differentiation, migration, and proliferation. The diffusive regime, including subdiffusive, Brownian, and superdiffusive motion, is of particular interest for inferring information about the dynamics of the cytoskeleton morphology during intracellular transport. The influence of dynamic cytoskeletal states on intracellular transport are investigated in Dictyostelium discoideum cells by single particle tracking of fluorescent nanoparticles, to relate quantitative motion parameters and intracellular processes before and after cytoskeletal disruption. A local mean-square displacement (MSD) analysis separates ballistic motion phases, which we exclude here, from diffusive nanoparticle motion. In this study, we focus on intracellular subdiffusion and elucidate lag-time dependence, with particular focus on the impact of cytoskeleton compartments like microtubules and actin filaments. This method proves useful for binary motion state distributions. Experimental results are compared to simulations of a data-driven Langevin model with finite velocity correlations that captures essential statistical features of the local MSD algorithm. Specifically, the values of the mean MSD exponent and effective diffusion coefficients can be traced back to negative correlations of the motion's increments. We clearly identify both microtubules and actin filaments as the cause for intracellular subdiffusion and show that actin-microtubule cross talk exerts viscosifying effects at timescales larger than 0.2 s. Our findings might give insights into material transport and information exchange in living cells, which might facilitate gaining control over cell functions.  相似文献   

6.
The dynamics of Brownian motion has widespread applications extending from transport in designed micro-channels up to its prominent role for inducing transport in molecular motors and Brownian motors. Here, Brownian transport is studied in micro-sized, two-dimensional periodic channels, exhibiting periodically varying cross-sections. The particles in addition are subjected to an external force acting alongside the direction of the longitudinal channel axis. For a fixed channel geometry, the dynamics of the two-dimensional problem is characterized by a single dimensionless parameter which is proportional to the ratio of the applied force and the temperature of the particle environment. In such structures entropic effects may play a dominant role. Under certain conditions the two-dimensional dynamics can be approximated by an effective one-dimensional motion of the particle in the longitudinal direction. The Langevin equation describing this reduced, one-dimensional process is of the type of the Fick-Jacobs equation. It contains an entropic potential determined by the varying extension of the eliminated channel direction, and a correction to the diffusion constant that introduces a space dependent diffusion. Different forms of this correction term have been suggested before, which we here compare for a particular class of models. We analyze the regime of validity of the Fick-Jacobs equation, both by means of analytical estimates and the comparisons with numerical results for the full two-dimensional stochastic dynamics. For the nonlinear mobility we find a temperature dependence which is opposite to that known for particle transport in periodic potentials. The influence of entropic effects is discussed for both, the nonlinear mobility and the effective diffusion constant.  相似文献   

7.
Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD) of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.  相似文献   

8.
We model the motility of Dictyostelium cells in a systematic data-driven manner. We deduce a minimal dynamical model that reproduces the statistical features of experimental trajectories. These are trajectories of the centroid of the cell perimeter, which is more sensitive to pseudopod activity than the usual tracking by centroid or nucleus. Our data account for cell individuality and dictate a model that extends the cell-type specific models recently derived for mammalian cells. Two generalized Langevin equations model stochastic periodic pseudopod motion parallel and orthogonal to the amoeba's direction of motion. This motion propels the amoeba with a random periodic left-right waddle in a direction that has a long persistence time. The model fully accounts for the statistics of the experimental trajectories, including velocity power spectra and auto-correlations, non-Gaussian velocity distributions, and multiplicative noise. Thus, we find neither need nor place in our data for an interpretation in terms of anomalous diffusion. The model faithfully captures cell individuality as different parameter values in the model, and serves as a basis for integrating the local mechanics of cell motion with our observed long-term behavior.  相似文献   

9.
The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric ‘memory’ of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior.  相似文献   

10.
Abstract

Time dependent probability distributions of the changes of direction of atomic velocities are considered in order to examine in detail the shape of the trajectories obtained through molecular simulations. We have analysed the atomic motions obtained from molecular dynamics simulations of soft-sphere systems at three very different states, i.e. a dilute fluid, a liquid at high density, and a solid. The methodology has also been used to check the reliability of the velocity evolution obtained when it is assumed that a single particle obeys the generalized Langevin equation and the effect of the other particles is represented by friction and random forces.  相似文献   

11.
Dynamics simulations of constrained particles can greatly aid in understanding the temporal and spatial evolution of biological processes such as lateral transport along membranes and self-assembly of viruses. Most theoretical efforts in the field of diffusive transport have focused on solving the diffusion equation on curved surfaces, for which it is not tractable to incorporate particle interactions even though these play a crucial role in crowded systems. We show here that it is possible to take such interactions into account by combining standard constraint algorithms with the classical velocity Verlet scheme to perform molecular dynamics simulations of particles constrained to an arbitrarily curved surface. Furthermore, unlike Brownian dynamics schemes in local coordinates, our method is based on Cartesian coordinates, allowing for the reuse of many other standard tools without modifications, including parallelization through domain decomposition. We show that by applying the schemes to the Langevin equation for various surfaces, we obtain confined Brownian motion, which has direct applications to many biological and physical problems. Finally we present two practical examples that highlight the applicability of the method: 1) the influence of crowding and shape on the lateral diffusion of proteins in curved membranes; and 2) the self-assembly of a coarse-grained virus capsid protein model.  相似文献   

12.
Models of biological diffusion-reaction systems require accurate classification of the underlying diffusive dynamics (e.g., Fickian, subdiffusive, or superdiffusive). We use a renormalization group operator to identify the anomalous (non-Fickian) diffusion behavior from a short trajectory of a single molecule. The method provides quantitative information about the underlying stochastic process, including its anomalous scaling exponent. The classification algorithm is first validated on simulated trajectories of known scaling. Then it is applied to experimental trajectories of microspheres diffusing in cytoplasm, revealing heterogeneous diffusive dynamics. The simplicity and robustness of this classification algorithm makes it an effective tool for analysis of rare stochastic events that occur in complex biological systems.  相似文献   

13.
Yamada S  Wirtz D  Kuo SC 《Biophysical journal》2000,78(4):1736-1747
To establish laser-tracking microrheology (LTM) as a new technique for quantifying cytoskeletal mechanics, we measure viscoelastic moduli with wide bandwidth (5 decades) within living cells. With the first subcellular measurements of viscoelastic phase angles, LTM provides estimates of solid versus liquid behavior at different frequencies. In LTM, the viscoelastic shear moduli are inferred from the Brownian motion of particles embedded in the cytoskeletal network. Custom laser optoelectronics provide sub-nanometer and near-microsecond resolution of particle trajectories. The kidney epithelial cell line, COS7, has numerous spherical lipid-storage granules that are ideal probes for noninvasive LTM. Although most granules are percolating through perinuclear spaces, a subset of perinuclear granules is embedded in dense viscoelastic cytoplasm. Over all time scales embedded particles exhibit subdiffusive behavior and are not merely tethered by molecular motors. At low frequencies, lamellar regions (820 +/- 520 dyne/cm(2)) are more rigid than viscoelastic perinuclear regions (330 +/- 250 dyne/cm(2), p < 0.0001), but spectra converge at high frequencies. Although the actin-disrupting agent, latrunculin A, softens and liquefies lamellae, physiological levels of F-actin, alone (11 +/- 1.2 dyne/cm(2)) are approximately 70-fold softer than lamellae. Therefore, F-actin is necessary for lamellae mechanics, but not sufficient. Furthermore, in time-lapse of apparently quiescent cells, individual lamellar granules can show approximately 4-fold changes in moduli that last >10 s. Over a broad range of frequencies (0.1-30, 000 rad/s), LTM provides a unique ability to noninvasively quantify dynamic, local changes in cell viscoelasticity.  相似文献   

14.
An increasing number of experimental studies employ single particle tracking to probe the physical environment in complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle traces, in particular, for subdiffusion phenomena. We discuss the statistical properties of mean maximal excursions (MMEs), i.e., the maximal distance covered by a test particle up to time t. Compared to traditional methods focusing on the mean-squared displacement we show that the MME analysis performs better in the determination of the anomalous diffusion exponent. We also demonstrate that combination of regular moments with moments of the MME method provides additional criteria to determine the exact physical nature of the underlying stochastic subdiffusion processes. We put the methods to test using experimental data as well as simulated time series from different models for normal and anomalous dynamics such as diffusion on fractals, continuous time random walks, and fractional Brownian motion.  相似文献   

15.
We introduce an unbiased protocol for performing rotational moves in rigid-body dynamics simulations. This approach-based on the analytic solution for the rotational equations of motion for an orthogonal coordinate system at constant angular velocity-removes deficiencies that have been largely ignored in Brownian dynamics simulations, namely errors for finite rotations that result from applying the noncommuting rotational matrices in an arbitrary order. Our algorithm should thus replace standard approaches to rotate local coordinate frames in Langevin and Brownian dynamics simulations.  相似文献   

16.
Saxton MJ 《Biophysical journal》2001,81(4):2226-2240
Anomalous subdiffusion is hindered diffusion in which the mean-square displacement of a diffusing particle is proportional to some power of time less than one. Anomalous subdiffusion has been observed for a variety of lipids and proteins in the plasma membranes of a variety of cells. Fluorescence photobleaching recovery experiments with anomalous subdiffusion are simulated to see how to analyze the data. It is useful to fit the recovery curve with both the usual recovery equation and the anomalous one, and to judge the goodness of fit on log-log plots. The simulations show that the simplest approximate treatment of anomalous subdiffusion usually gives good results. Three models of anomalous subdiffusion are considered: obstruction, fractional Brownian motion, and the continuous-time random walk. The models differ significantly in their behavior at short times and in their noise level. For obstructed diffusion the approach to the percolation threshold is marked by a large increase in noise, a broadening of the distribution of diffusion coefficients and anomalous subdiffusion exponents, and the expected abrupt decrease in the mobile fraction. The extreme fluctuations in the recovery curves at and near the percolation threshold result from extreme fluctuations in the geometry of the percolation cluster.  相似文献   

17.
The mobility of membrane proteins is a critical determinant of their interaction capabilities and protein functions. The heterogeneity of cell membranes imparts different types of motion onto proteins; immobility, random Brownian motion, anomalous sub-diffusion, 'hop' or confined diffusion, or directed flow. Quantifying the motion of proteins therefore enables insights into the lateral organisation of cell membranes, particularly membrane microdomains with high viscosity such as lipid rafts. In this review, we examine the hypotheses and findings of three main techniques for analysing protein dynamics: fluorescence recovery after photobleaching, single particle tracking and fluorescence correlation spectroscopy. These techniques, and the physical models employed in data analysis, have become increasingly sophisticated and provide unprecedented details of the biophysical properties of protein dynamics and membrane domains in cell membranes. Yet despite these advances, there remain significant unknowns in the relationships between cholesterol-dependent lipid microdomains, protein-protein interactions, and the effect of the underlying cytoskeleton. New multi-dimensional microscopy approaches may afford greater temporal and spatial resolution resulting in more accurate quantification of protein and membrane dynamics in live cells.  相似文献   

18.
This paper shows how Brownian motion theory can be used to analyze features of individual ion trajectories in channels as calculated by molecular dynamics, and that its use permits more precise determinations of diffusion coefficients than would otherwise be possible. We also show how a consideration of trajectories of single particles can distinguish between effects due to the magnitude of the diffusion coefficient and effects due to barriers and wells in the potential profile, effects which can not be distinguished by consideration of average fluxes.  相似文献   

19.
Protein folding is considered here by studying the dynamics of the folding of the triple β-strand WW domain from the Formin-binding protein 28. Starting from the unfolded state and ending either in the native or nonnative conformational states, trajectories are generated with the coarse-grained united residue (UNRES) force field. The effectiveness of principal components analysis (PCA), an already established mathematical technique for finding global, correlated motions in atomic simulations of proteins, is evaluated here for coarse-grained trajectories. The problems related to PCA and their solutions are discussed. The folding and nonfolding of proteins are examined with free-energy landscapes. Detailed analyses of many folding and nonfolding trajectories at different temperatures show that PCA is very efficient for characterizing the general folding and nonfolding features of proteins. It is shown that the first principal component captures and describes in detail the dynamics of a system. Anomalous diffusion in the folding/nonfolding dynamics is examined by the mean-square displacement (MSD) and the fractional diffusion and fractional kinetic equations. The collisionless (or ballistic) behavior of a polypeptide undergoing Brownian motion along the first few principal components is accounted for.  相似文献   

20.
We have developed a Brownian dynamics simulation algorithm to generate Brownian trajectories of an isolated, rigid particle of arbitrary shape in the presence of electric fields or any other external agents. Starting from the generalized diffusion tensor, which can be calculated with the existing HYDRO software, the new program BROWNRIG (including a case-specific subprogram for the external agent) carries out a simulation that is analyzed later to extract the observable dynamic properties. We provide a variety of examples of utilization of this method, which serve as tests of its performance, and also illustrate its applicability. Examples include free diffusion, transport in an electric field, and diffusion in a restricting environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号