首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been shown previously that after spinal cord injury, the loss of grey matter is relatively faster than loss of white matter suggesting interventions to save white matter tracts offer better therapeutic possibilities. Loss of white matter in and around the injury site is believed to be the main underlying cause for the subsequent loss of neurological functions. In this study we used a series of techniques, including estimations of the number of axons with pathology, immunohistochemistry and mapping of distribution of pathological axons, to better understand the temporal and spatial pathological events in white matter following contusion injury to the rat spinal cord. There was an initial rapid loss of axons with no detectable further loss beyond 1 week after injury. Immunoreactivity for CNPase indicated that changes to oligodendrocytes are rapid, extending to several millimetres away from injury site and preceding much of the axonal loss, giving early prediction of the final volume of white matter that survived. It seems that in juvenile rats the myelination of axons in white matter tracts continues for some time, which has an important bearing on interpretation of our, and previous, studies. The amount of myelin debris and axon pathology progressively decreased with time but could still be observed at 10 weeks after injury, especially at more distant rostral and caudal levels from the injury site. This study provides new methods to assess injuries to spinal cord and indicates that early interventions are needed for the successful sparing of white matter tracts following injury.  相似文献   

2.
Myelin formation in cultures of previously dissociated mouse spinal cord   总被引:1,自引:1,他引:0  
Myelin formation in cultures of previously dissociated spinal cord from foetal mice is described. In addition to the expected pattern of myelination, in which axons are closely wrapped by myelin lamellae, redundant folds of myelin have been found, as have double sheaths surrounding a single axon. Hypotheses concerning the generation of these appearances are discussed. It is suggested that certain intracytoplasmic laminar bodies found in oligodendrocytes in vitro may be of mitochondrial origin.  相似文献   

3.
In mammals, the oligodendrocyte population includes morphological and molecular varieties. We reported previously that an antiserum against the T4-O molecule labels a subgroup of oligodendrocytes related to large myelinated axons in adult chicken white matter. We also reported that T4-O immunoreactive cells first appear in the developing ventral funiculus (VF) at embryonic day (E)15, subsequently increasing rapidly in number. Relevant fine structural data for comparison are not available in the literature. This prompted the present morphological analysis of developing and mature VF white matter in the chicken. The first axon-oligodendrocyte connections were seen at E10 and formation of compact myelin had started at E12. Between E12 and E15 the first myelinating oligodendrocytes attained a Schwann cell-like morphology. At hatching (E21) 60% of all VF axons were myelinated and in the adult this proportion had increased to 85%. The semilunar or polygonal oligodendrocytes associated with adult myelinated axons contained many organelles indicating a vivid metabolic activity. Domeshaped outbulgings with gap junction-like connections to astrocytic profiles were frequent. Oligodendrocytes surrounded by large myelinated axons and those surrounded by small myelinated axons were cytologically similar. But, thick and thin myelin sheaths had dissimilar periodicities and Marchi-positive myelinoid bodies occurred preferentially in relation to large myelinated axons. We conclude that early oligodendrocytes contact axons and form myelin well before the first expression of T4-O and that emergence of a T4-O immunoreactivity coincides in time with development of a Type IV phenotype. Our data also show that oligodendrocytes associated with thick axons are cytologically similar to cells related to thin axons. In addition, the development of chicken VF white matter was found to be similar to the development of mammalian white matter, except for the rapid time course.  相似文献   

4.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

5.
The cellular mechanisms that regulate the topographic arrangement of myelin internodes along axons remain largely uncharacterized. Recent clonal analysis of oligodendrocyte morphologies in the mouse optic nerve revealed that adjacent oligodendrocytes frequently formed adjacent internodes on one or more axons in common, whereas oligodendrocytes in the optic nerve were never observed to myelinate the same axon more than once. By modelling the process of axonal selection at the single cell level, we demonstrate that internode length and primary process length constrain the capacity of oligodendrocytes to myelinate the same axon more than once. On the other hand, probabilistic analysis reveals that the observed juxtaposition of myelin internodes among common sets of axons by adjacent oligodendrocytes is highly unlikely to occur by chance. Our analysis may reveal a hitherto unknown level of communication between adjacent oligodendrocytes in the selection of axons for myelination. Together, our analyses provide novel insights into the mechanisms that define the spatial organization of myelin internodes within white matter at the single cell level.  相似文献   

6.
Theiler's virus, a picornavirus, persists for life in the central nervous system of mouse and causes a demyelinating disease that is a model for multiple sclerosis. The virus infects neurons first but persists in white matter glial cells, mainly oligodendrocytes and macrophages. The mechanism, by which the virus traffics from neurons to glial cells, and the respective roles of oligodendrocytes and macrophages in persistence are poorly understood. We took advantage of our previous finding that the shiverer mouse, a mutant with a deletion in the myelin basic protein gene (Mbp), is resistant to persistent infection to examine the role of myelin in persistence. Using immune chimeras, we show that resistance is not mediated by immune responses or by an efficient recruitment of inflammatory cells into the central nervous system. With both in vivo and in vitro experiments, we show that the mutation does not impair the permissiveness of neurons, oligodendrocytes, and macrophages to the virus. We demonstrate that viral antigens are present in cytoplasmic channels of myelin during persistent infection of wild-type mice. Using the optic nerve as a model, we show that the virus traffics from the axons of retinal ganglion cells to the cytoplasmic channels of myelin, and that this traffic is impaired by the shiverer mutation. These results uncover an unsuspected axon to myelin traffic of Theiler's virus and the essential role played by the infection of myelin/oligodendrocyte in persistence.  相似文献   

7.
The peroxidase-antiperoxidase technique was used for immunocytochemical localization of carbonic anhydrase in the mouse spinal cord to detect whether this antigen was normally present in myelinated fibers, in oligodendrocytes in both white and gray matter, and in astrocytes, and to determine where the carbonic anhydrase might be localized in the spinal cords of dysmyelinating mutant (shiverer) mice. The most favorable methods for treating tissue were: 1) immersion in formalin-ethanol-acetic acid followed by paraffin embedding, or 2) light fixation with paraformaldehyde and preparation of vibratome sections. Carnoy's solution, followed by paraffin embedding, extracted myelin from the tissue, while aqueous aldehydes, when used before paraffin embedding, reduced staining everywhere except at sites of compact myelin. The latter conclusion was based, in part, on the almost complete loss of this antigen from the shiverer cord, where compact myelin is known to be virtually absent but where membrane-bound carbonic anhydrase was demonstrated enzymatically. When the optimal methods were used with normal mouse cords, carbonic anhydrase was found throughout the white matter columns and in the oligodendrocytes in gray and white matter. The staining of the white matter was attributed to myelinated fibers because of the similarity in distribution to both a histological myelin stain and the immunocytochemical staining for myelin basic protein. In the mutant mice the oligodendrocyte cell bodies and processes, which were stained in all areas of the spinal cord, were particularly numerous at the periphery of the sections. In contrast to the oligodendrocytes, the fibrous astrocytes appeared to lack carbonic anhydrase, or to have lower than detectable levels, since the astrocyte marker, glial fibrillary acidic protein, had a very different distribution from that of carbonic anhydrase. Even finer localization was obtained in vibratome sections, where the antibody against carbonic anhydrase permitted visualization of the processes connecting oligodendrocytes to myelinated fibers in the normal adult spinal cord.  相似文献   

8.
Myelin-associated glycoprotein (MAG): past, present and beyond   总被引:1,自引:0,他引:1  
The myelin-associated glycoprotein (MAG) is a type I transmembrane glycoprotein localized in periaxonal Schwann cell and oligodendroglial membranes of myelin sheaths where it functions in glia-axon interactions. It contains five immunoglobulin (Ig)-like domains and is in the sialic acid-binding subgroup of the Ig superfamily. It appears to function both as a ligand for an axonal receptor that is needed for the maintenance of myelinated axons and as a receptor for an axonal signal that promotes the differentiation, maintenance and survival of oligodendrocytes. Its function in the maintenance of myelinated axons may be related to its role as one of the white matter inhibitors of neurite outgrowth acting through a receptor complex involving the Nogo receptor and/or gangliosides containing 2,3-linked sialic acid. MAG is expressed as two developmentally regulated isoforms with different cytoplasmic domains that may activate different signal transduction pathways in myelin-forming cells. MAG contains a carbohydrate epitope shared with other glycoconjugates that is a target antigen in autoimmune peripheral neuropathy associated with IgM gammopathy and has been implicated in a dying back oligodendrogliopathy in multiple sclerosis.  相似文献   

9.
Accordingly to its known function in corticospinal tract (CST) developmental growth, previous reports have shown an inhibitory role of Wnt5a in CST regeneration after spinal cord injury (SCI). Interestingly, it has been subsequently demonstrated that Wnt5a also modulates the developmental growth of non-CST axons and that different Wnt5a receptors are expressed in neurons, oligodendrocytes, NG2+ glial precursors and reactive microglia/macrophages and astrocytes after SCI. However, the role of Wnt5a in the response of these cell types, in the regeneration of non-CST axons and in functional recovery after SCI is currently unknown. To evaluate this, rats were subjected to spinal cord contusion and injected with a lentiviral vector generated to overexpress Wnt5a. Histological analyses were performed in spinal cord sections processed for the visualization of myelin, oligodendrocytes, neurons, microglia/macrophages, astrocytes, NG2+ glial precursors and serotonergic axons. Motor and bladder function recovery were also assessed. Further advancing our knowledge on the role of Wnt5a in SCI, we found that, besides its previously reported functions, Wnt5a overexpression elicits a reduction on neuronal cell density, the accumulation of NG2+ glial precursors and the descending serotonergic innervation in the affected areas, along with impairment of motor and bladder function recovery after SCI.  相似文献   

10.
We prepared a monoclonal antibody to microtubule-associated protein 1 (MAP 1), one of the two major high molecular weight MAP found in microtubules isolated from brain tissue. We found that MAP 1 can be resolved by SDS PAGE into three electrophoretic bands, which we have designated MAP 1A, MAP 1B, and MAP 1C in order of increasing electrophoretic mobility. Our antibody recognized exclusively MAP 1A, the most abundant and largest MAP 1 polypeptide. To determine the distribution of MAP 1A in nervous system tissues and cells, we examined tissue sections from rat brain and spinal cord, as well as primary cultures of newborn rat brain by immunofluorescence microscopy. Anti-MAP 1A stained white matter and gray matter regions, while a polyclonal anti-MAP 2 antibody previously prepared in this laboratory stained only gray matter. This confirmed our earlier biochemical results, which indicated that MAP 1 is more uniformly distributed in brain tissue than MAP 2 (Vallee, R.B., 1982, J. Cell Biol., 92:435-442). To determine the identity of cells and cellular processes immunoreactive with anti-MAP 1A, we examined a variety of brain and spinal cord regions. Fibrous staining of white matter by anti-MAP 1A was generally observed. This was due in part to immunoreactivity of axons, as judged by examination of axonal fiber tracts in the cerebral cortex and of large myelinated axons in the spinal cord and in spinal nerve roots. Cells with the morphology of oligodendrocytes were brightly labeled in white matter. Intense staining of Purkinje cell dendrites in the cerebellar cortex and of the apical dendrites of pyramidal cells in the cerebral cortex was observed. By double-labeling with antibodies to MAP 1A and MAP 2, the presence of both MAP in identical dendrites and neuronal perikarya was found. In primary brain cell cultures anti-MAP 2 stained predominantly cells of neuronal morphology. In contrast, anti-MAP 1A stained nearly all cells. Included among these were neurons, oligodendrocytes and astrocytes as determined by double-labeling with anti-MAP 1A in combination with antibody to MAP 2, myelin basic protein or glial fibrillary acidic protein, respectively. These results indicate that in contrast to MAP 2, which is specifically enriched in dendrites and perikarya of neurons, MAP 1A is widely distributed in the nervous system.  相似文献   

11.
目的:观察大鼠脊髓胸段(T8-T10)平面中少突胶质细胞在白质和灰质中分布和形态学差异。方法:应用免疫荧光组织化学方法,利用少突胶质细胞特异性标志物一抗大鼠Nogo-A分子单克隆抗体,观察大鼠脊髓胸段平面白质和灰质中少突胶质细胞分布和形态学差异。结果:Nogo—A免疫阳性标记主要集中在少突胶质细胞的胞体、突起及其形成的髓鞘。在冠状切面中,白质中的少突胶质细胞广泛分布,而灰质中少突胶质细胞主要分布于神经元的周围;白质中少突胶质细胞胞体较灰质中少突胶质细胞的胞体大,且白质中少突胶质细胞突起及形成的髓鞘结构较灰质中明显。在矢状切面中,白质中少突胶质细胞多成”串珠状”排列,而灰质中少突胶质细胞则紧贴神经元。在脊髓近端背根结结构中,可以观察到少突胶质细胞形成的轴突呈”蜂窝状”结构。结论:应用抗大鼠Nogo—A分子单克隆抗体的免疫荧光组织化学染色方法能够较好展示少突胶质细胞分布特点和形态学差异,与少突胶质细胞类别(束内细胞,卫星细胞)和功能特点相适应,为进一步研究生理和病理条件下,少突胶质细胞的机能奠定基础。  相似文献   

12.
PTPα interacts with F3/contactin to form a membrane-spanning co-receptor complex to transduce extracellular signals to Fyn tyrosine kinase. As both F3 and Fyn regulate myelination, we investigated a role for PTPα in this process. Here, we report that both oligodendrocytes and neurons express PTPα that evenly distributes along myelinated axons of the spinal cord. The ablation of PTPα in vivo leads to early formation of transverse bands that are mainly constituted by F3 and Caspr along the axoglial interface. Notably, PTPα deficiency facilitates abnormal myelination and pronouncedly increases the number of non-landed oligodendrocyte loops at shortened paranodes in the spinal cord. Small axons, which are normally less myelinated, have thick myelin sheaths in the spinal cord of PTPα-null animals. Thus, PTPα may be involved in the formation of axoglial junctions and ensheathment in small axons during myelination of the spinal cord.  相似文献   

13.
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system characterized by plaque formation containing lost oligodendrocytes, myelin, axons, and neurons. Remyelination is an endogenous repair mechanism whereby new myelin is produced subsequent to proliferation, recruitment, and differentiation of oligodendrocyte precursor cells into myelin-forming oligodendrocytes, and is necessary to protect axons from further damage. Currently, all therapeutics for the treatment of multiple sclerosis target the aberrant immune component of the disease, which reduce inflammatory relapses but do not prevent progression to irreversible neurological decline. It is therefore imperative that remyelination-promoting strategies be developed which may delay disease progression and perhaps reverse neurological symptoms. Several animal models of demyelination exist, including experimental autoimmune encephalomyelitis and curprizone; however, there are limitations in their use for studying remyelination. A more robust approach is the focal injection of toxins into the central nervous system, including the detergent lysolecithin into the spinal cord white matter of rodents. In this protocol, we demonstrate that the surgical procedure involved in injecting lysolecithin into the ventral white matter of mice is fast, cost-effective, and requires no additional materials than those commercially available. This procedure is important not only for studying the normal events involved in the remyelination process, but also as a pre-clinical tool for screening candidate remyelination-promoting therapeutics.  相似文献   

14.
Butt  A. M  Ibrahim  M  Berry  M 《Brain Cell Biology》1997,26(5):327-338
Myelinogenesis was investigated in whole-mounted anterior medullary vela from rats aged postnatal day (P) 10–12, using double immunofluorescence labelling with Rip and anti-neurofilament 200 (NF200) antibodies, to identify oligodendrocytes and axons, respectively. A number of discrete phases of maturation of oligodendrocyte units were recognised. (1) Promyelinating oligodendrocytes co-expressed Rip and Myelin basic Protein and formed axonal associations, prior to ensheathment. (2) Transitional oligodendrocytes contained both ensheathing and non-ensheating processes. (3) Myelinating oligodendrocytes were established after a period of remodelling (in which non-ensheathing processes were lost), appearing as oligodendrocyte unit morphological phenotypes with a definitive number of incipient myelin sheaths. (4) Maturation of myelinating oligodendrocytes was defined as the establishment of internodal sheath lengths and the redistrubution of myelin basic protein from the cell somata and radial processes into the myelin sheaths only. Myelination was probably related to the maturational state of the axons, since it was initiated when the latter had attained a critical diameter of between ~0.2 and 0.4 μm, coincident with the expression of NF200. Oligodendrocyte differentiation and myelination of the AMV were asynchronous and multifocal, and at P10: (1) axons which were destined to be of the largest calibre in the adult AMV were already myelinated by early developing oligodendrocytes, whilst those which were destined to be the smallest calibre in the adult were unmyelinated, but ultimately became ensheathed by late developing oligoendrocytes; (2) axons were sequentially ensheathed by early developing myelinating oligodendrocytes and late developing promyelinating oligodendrocytes; (3) all axons were small calibre; (4) oligodendrocyte units exhibited polymorphism. Thus, the development of oligodendrocyte morphological phenotypes was not related solely to either the physical dimension of axon calibre at the time of ensheathment, nor oligodendrocyte birth dates.  相似文献   

15.
The oligodendroglial population includes Type I and II cells related to several thin axons, Type III cells with a few processes in relation to relatively thick axons and Type IV cells related to a single thick axon. This structural diversity of oligodendrocytes is accompanied by a molecular heterogeneity. In the chicken spinal cord, oligodendrocytes have begun to contact axons at embryonic day (E)10 and compact sheaths have appeared by E12. At the latter stage, most sheath-forming oligodendrocytes contact more than one axon. At E15, however, each sheath-forming cell seems to have developed a Schwann cell-like anatomy, being related to a single axon. Based on these findings, the present study examines more thoroughly the anatomy of early developing oligodendrocytes in the chicken spinal cord. Examination of slices immunostained with antibodies against the oligodendroglial marker O4 showed that a few positive cells are present at E6, after which the occurrence increases with age. At E12 most immunostained cells have two or more processes. At E15 however, dye-injected oligodendrocytes have developed a Type IV structure. Between E12 and E15, mean sheath length increases about 4×, from 50 μm to over 200 μm, while the length of the spinal cord increases 36% only. This indicates that early oligodendrocytes in chicken white matter develop a Type IV anatomy between E12 and E15 through an elimination of sheaths.  相似文献   

16.
Abstract: Biochemical methods were used to study the time course of transport of choline phospholipids (labeled by the injection of [3H]choline into the ventral horn of the lumbar spinal cord) in rat sciatic nerve. Autoradiographic methods were used to localize the transported lipid within motor axons. Transported phospholipid, primarily phosphatidylcholine, present in the nerve at 6 h, continued to accumulate over the following 12 days. No discrete waves of transported lipid were observed (a small wave of radioactive phospholipid moving at the high rate would have been missed); the amounts of radioactive lipid increased uniformly along the entire sciatic nerve. In light-microscope autoradiographs, a class of large-caliber axons, presumably motor axons, retained the labeled lipid. Some lipid, even at 6 h, was seen within the myelin sheaths. Later, the labeling of the myelin relative to axon increased. The continued accumulation of choline phospholipids in the axons probably signifies their prolonged release from cell bodies and their retention in various axonal membranes, including the axolemma. The build-up of these phospholipids in myelin probably represents their transfer from the axons to the myelin sheaths surrounding them. When nerves are crushed and allowed to regenerate for 6 or 12 days, choline phospholipids transported during these times enter the regenerating nerve. In light and electron microscope autoradiographs, transported lipid was seen to be localized primarily in the regenerating axons. However, grains overlay the adjacent Schwann cell cytoplasm, indicating transported lipids were transferred from the regenerating axons to the associated Schwann cells. In addition, some cells not associated with growing axons were labeled, suggesting that phosphatidylcholine and possibly acetylcholine, carried to the regenerating axons by axonal transport, were actively metabolized in the terminal, with released choline label being used by other cells. These results demonstrate that axonal transport supplies mature and growing axons and their glial cells with choline phospholipids.  相似文献   

17.
Following intracerebral inoculation, the DA strain of Theiler's virus sequentially infects neurons in the gray matter and glial cells in the white matter of the spinal cord. It persists in the latter throughout the life of the animal. Several observations suggest that the virus spreads from the gray to the white matter by axonal transport. In contrast, the neurovirulent GDVII strain causes a fatal encephalitis with lytic infection of neurons. It does not infect the white matter of the spinal cord efficiently and does not persist in survivors. The inability of this virus to infect the white matter could be due to a defect in axonal transport. Using footpad inoculations, we showed that the GDVII strain is, in fact, transported in axons. Transport was prevented by sectioning the sciatic nerve. The kinetics of transport and experiments using colchicine suggested that the virus uses microtubule-associated fast axonal transport. Our results show that a cardiovirus can spread by fast axonal transport and suggest that the inability of the GDVII strain to infect the white matter is not due to a defect in axonal transport.  相似文献   

18.
Zusammenfassung In der Wand der Eminentia mediana des erwachsenen Kaninchens kommen myelinisierte Oligodendrozyten vor. Jeder von ihnen ist von einer dünnen Markscheide umgeben. Dieses Myelin unterscheidet sich in folgendem von Axon-Myelin: Stellenweise erscheinen die dieOligodendrozyten umgebenden Lamellen nicht als typische Linien (innere Verbundmembranen), sondern es bleiben zytoplasmatische Umscheidungen der Oligodendrozyten erhalten. Die Lamellen können mit einer zungenförmigen Schleife in verschiedener Länge innerhalb der Markscheide endigen. Das Myelin der Oligodendrozyten ist deshalb unregelmäßg strukturiert.
Myelinated oligodendrocytes in the wall of the median eminence in rabbit
Summary In the wall of the median eminence of the adult rabbit myelinated oligodendrocytes occur. Each of them is surrounded by thin myelin sheaths. This myelin differs in the following respects from axonal myelin: In some instances lamellae surrounding oligodendrocytes appear not as typical dense lines (internal compound membranes) but as persisting oligodendrocyte cytoplasm sheaths. Lamellae may terminate in various length within the sheaths forming a tonguelike loop. For this reason irregularities appear in the structure of oligodendrocyte myelin.
Die Untersuchung wurde mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft durchgeführt.  相似文献   

19.
Peripheral nerve demyelination was induced in cats by oral administration of ether extracts of Tullidora (Karwinskia humboldtiana). Proteins from several hindlimb nerves, spinal roots, and dorsal columns of the spinal cord were subjected to slab gel electrophoresis and quantified by densitometry. In Tullidora-treated cats with severe motor disturbances, specific myelin proteins were reduced by at least 50% in motor nerves and less than 25% in cutaneous axons. There was a greater decrease of these proteins in the distal than in the cephalad segments of the sciatic nerve; no changes were detected either in the spinal roots or in the white matter of the spinal cord. Electron microscopy revealed intense demyelination in the motor nerves only. Both the density of the 100 A-thick neurofilaments and the relative proportion of a polypeptide with a molecular weight of 68,000 were considerably increased in the affected nerves. It is tentatively concluded that the active principles of Tullidora may enter the axons through the motor nerve terminals. The distal segments of the motor nerves would then be preferentially affected and demyelination could result from axonal damage.  相似文献   

20.
Ion fluxes in mammalian myelinated axons are restricted to the nodes of Ranvier, where, in particular, voltage-gated Na+ channels are clustered at a high density. The node of Ranvier is separated from the internode by two distinct domains of the axolemma, the paranode and the juxtaparanode. Each axonal domain is characterized by the presence of a specific protein complex. Although oligodendrocytes and/or myelin membranes are believed to play some instructive roles in the organization of axonal domains, the mechanisms leading to their localized distribution are not well understood. In this paper we focused on the involvement of myelin sheaths in this domain organization and examined the distribution of axonal components in the optic nerves of wild type, hypomyelinating jimpy mice and demyelinating PLP transgenic mice. The results showed that the clustering of Na+ channels does not require junction-like structures to be formed between the glial processes and axons, but requires mature oligodendrocytes to be present in close vicinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号