首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
To establish systemic infections, Salmonella enterica serovar Typhimurium (S. Typhimurium) requires Salmonella pathogenicity island 2 (SPI‐2) to survive and replicate within macrophages. High expression of many SPI‐2 genes during the entire intracellular growth period within macrophages is essential, as it contributes to the formation of Salmonella‐containing vacuole and bacterial replication. However, the regulatory mechanisms underlying the sustained induction of SPI‐2 within macrophages are not fully understood. Here, we revealed a time‐dependent regulation of SPI‐2 expression mediated by a novel regulator PagR (STM2345) in response to the low Mg2+ and low phosphate (Pi) signals, which ensured the high induction of SPI‐2 during the entire intramacrophage growth period. Deletion of pagR results in reduced bacterial replication in macrophages and attenuation of systemic virulence in mice. The effects of pagR on virulence are dependent on upregulating the expression of slyA, a regulator of SPI‐2. At the early (0–4 hr) and later (after 4 hr) stage post‐infection of macrophages, pagR is induced by the low Pi via PhoB/R two‐component systems and low Mg2+ via PhoP/Q systems, respectively. Collectively, our findings revealed that the PagR‐mediated regulatory mechanism contributes to the precise and sustained activation of SPI‐2 genes within macrophages, which is essential for S. Typhimurium systemic virulence.  相似文献   

9.
10.
As natural killers of bacteria, bacteriophages have forced bacteria to develop a variety of defence mechanisms. The alteration of host receptors is one of the most common bacterial defence strategies against phage infection, which completely blocks phage attachment but comes at a potential fitness cost to the bacteria. Here, we report the cost‐free, transient emergence of phage resistance in Salmonella enterica subspecies enterica serovar Typhimurium through a phase‐variable modification of the O‐antigen. Phage SPC35 typically requires BtuB as a host receptor but also uses the Salmonella O12‐antigen as an adsorption‐assisting apparatus for the successful infection of S. Typhimurium. The α‐1,4‐glucosylation of galactose residues in the O12‐antigen by phase variably expressed O‐antigen glucosylating genes, designated the LT 2 gtrABC1 cluster, blocks the adsorption‐assisting function of the O12‐antigen. Consequently, it confers transient SPC35 resistance to Salmonella without any mutations to the btuB gene. This temporal switch‐off of phage adsorption through phase‐variable antigenic modification may be widespread among Gram‐negative bacteria‐phage systems.  相似文献   

11.
12.
13.
In Bacillus subtilis, the WalRK (YycFG) two‐component system controls peptidoglycan metabolism in exponentially growing cells while PhoPR controls the response to phosphate limitation. Here we examine the roles of WalRK and PhoPR in peptidoglycan metabolism in phosphate‐limited cells. We show that B. subtilis cells remain viable in a phosphate‐limited state for an extended period and resume growth rapidly upon phosphate addition, even in the absence of a PhoPR‐mediated response. Peptidoglycan synthesis occurs in phosphate‐limited wild‐type cells at ~27% the rate of exponentially growing cells, and at ~18% the rate of exponentially growing cells in the absence of PhoPR. In phosphate‐limited cells, the WalRK regulon genes yocH, cwlO(yvcE), lytE and ydjM are expressed in a manner that is dependent on the WalR recognition sequence and deleting these genes individually reduces the rate of peptidoglycan synthesis. We show that ydjM expression can be activated by PhoP~P in vitro and that PhoP occupies its promoter in phosphate‐limited cells. However, iseA(yoeB) expression cannot be repressed by PhoP~P in vitro, but can be repressed by non‐phosphorylated WalR in vitro. Therefore, we conclude that peptidoglycan metabolism is controlled by both WalRK and PhoPR in phosphate‐limited B. subtilis cells.  相似文献   

14.
15.
16.
The Cpx and σE regulons help maintain outer membrane integrity; the Cpx pathway monitors the biogenesis of cell surface structures, such as pili, while the σE pathway monitors the biogenesis of β‐barrel outer membrane proteins (OMPs). In this study we revealed the importance of the Cpx regulon in the event of β‐barrel OMP mis‐assembly, by utilizing mutants expressing either a defective β‐barrel OMP assembly machinery (Bam) or assembly defective β‐barrel OMPs. Analysis of specific mRNAs showed that ΔcpxR bam double mutants failed to induce degP expression beyond the wild type level, despite activation of the σE pathway. The synthetic conditional lethal phenotype of ΔcpxR in mutant Bam or β‐barrel OMP backgrounds was reversed by wild type DegP expressed from a heterologous plasmid promoter. Consistent with the involvement of the Cpx regulon in the event of aberrant β‐barrel OMP assembly, the expression of cpxP, the archetypal member of the cpx regulon, was upregulated in defective Bam backgrounds or in cells expressing a single assembly‐defective β‐barrel OMP species. Together, these results showed that both the Cpx and σE regulons are required to reduce envelope stress caused by aberrant β‐barrel OMP assembly, with the Cpx regulon principally contributing by controlling degP expression.  相似文献   

17.
18.

Background

S. Typhi, a human-restricted Salmonella enterica serovar, causes a systemic intracellular infection in humans (typhoid fever). In comparison, S. Typhimurium causes gastroenteritis in humans, but causes a systemic typhoidal illness in mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately regulated network of genes whose expression is required for intracellular survival of S. enterica.

Methodology/Principal Findings

Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS), we examined the protein expression profiles of three sequenced S. enterica strains: S. Typhimurium LT2, S. Typhi CT18, and S. Typhi Ty2 in PhoP-inducing and non-inducing conditions in vitro and compared these results to profiles of phoP/Q mutants derived from S. Typhimurium LT2 and S. Typhi Ty2. Our analysis identified 53 proteins in S. Typhimurium LT2 and 56 proteins in S. Typhi that were regulated in a PhoP-dependent manner. As expected, many proteins identified in S. Typhi demonstrated concordant differential expression with a homologous protein in S. Typhimurium. However, three proteins (HlyE, STY1499, and CdtB) had no homolog in S. Typhimurium. HlyE is a pore-forming toxin. STY1499 encodes a stably expressed protein of unknown function transcribed in the same operon as HlyE. CdtB is a cytolethal distending toxin associated with DNA damage, cell cycle arrest, and cellular distension. Gene expression studies confirmed up-regulation of mRNA of HlyE, STY1499, and CdtB in S. Typhi in PhoP-inducing conditions.

Conclusions/Significance

This study is the first protein expression study of the PhoP virulence associated regulon using strains of Salmonella mutant in PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499) that are not present in the genome of the wide host-range Typhimurium, and includes the first protein expression profiling of a live attenuated bacterial vaccine studied in humans (Ty800).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号