首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Over the last decades human have introduced non-native organisms to Antarctica, including the grass species Poa annua. This non-native grass under constant growth temperatures has been shown negatively affect the growth of the only two native Antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis, under constant growth temperatures. However, whether there are changes in the interaction between these species under warmer conditions is an important question. In cold ecosystems, soil nutrient status directly affects plant responses to increases in temperature and Antarctic soils are highly variable in nutrient supply. Thus, in this study we experimentally assessed the interaction between the non-native Poa with the two native Antarctic vascular plant species at two different temperatures and levels of nutrient availability. Individual mats of the study species were collected in King George Island, and then transported to Concepcion where we conducted competition experiments. In the first experiment we used soil similar to that of Antarctica and plants in competition were grown at two temperatures: 5°/2° and 11°/5 °C (day/night temperature). In a second experiment plants were grown in these two temperature regimes, but we varied nitrogen (N) availability by irrigating plants with Hoagland solutions that contained 8000 or 300 µM of N. Overall, Poa exerted a competitive effect on Deschampsia but only at the higher temperature and higher N availability. At 5°/11 °C the competitive response of Deschampsia to Poa was of similar magnitude to the competitive effect of P. Deschampsia, and the competitive effect was greater with at low N. The competitive effect of Poa was similar to the competitive response of Colobanthus to Poa at both temperatures and N levels. Thus, at low temperatures and N soil content the native Antarctic species might withstand Poa invasion, but this might change with climate warming.  相似文献   

2.

Background and aims

Intraspecific aggregation of plant individuals can promote species coexistence by delaying competitive exclusions. However, such impacts may differ among species with contrasting spatial architecture and rely on the spatial distribution of resources.

Methods

We grew a phalanx clonal plant Carex neurocarpa (with aggregated ramets) and a guerilla one Bolboschoenus planiculmis (with diffused ramets) in monocultures or in 1:1 mixtures with an even or a clustered distribution pattern of the two species in homogeneous or heterogeneous soils.

Results

After 16 months, shoot biomass and ramet number were greater in mixtures than in monocultures in C. neurocarpa, but smaller in B. planiculmis. However, the growth of neither C. neurocarpa nor B. planiculmis differed between even and clustered mixtures. Soil nutrient heterogeneity did not significantly affect the growth of either species, but increased relative yield of B. planiculmis and decreased that of C. neurocarpa.

Conclusions

The relative importance of intra- vs. interspecific competition depends on the spatial architecture of plants, and soil nutrient heterogeneity slows down competitive exclusion by decreasing differences in competitive ability between plants. However, our results do not support the idea that intraspecific aggregation of individuals alters competitive interactions between species.
  相似文献   

3.
Nutrient uptake by plants in nutrient-rich water in competitive conditions was investigated with two mixed culture combinations of Limnocharis flava/Pistia stratiotes and Limnocharis flava/Ipomoea aquatica by using various initial planting densities. Further, the biomass production and other growth-related parameters were measured to understand the dominant competitive behavior. The effects of interspecific competition on influencing nutrient uptake were substantial. In both experiments, the superior competitor produced a higher biomass regardless of the initial density, which was the dominant factor in determining the total nutrient uptake from water. Both aboveground competition and belowground competition appeared to be important in influencing competitive outcomes. Optimal removal of nutrients was produced by a treatment ratio of 5.31: 5.31 Limnocharis flava/Ipomoea aquatica plants/m2, which gave the highest observed nutrient removal, of which approximately 52% of TN removal and 90% of TP removal were due to plant uptake.  相似文献   

4.
The competitive superiority of invasive plants plays a key role in the process of plant invasions, enabling invasive plants to overcome the resistance of local plant communities. Fast aboveground growth and high densities lead to the competitive superiority of invasive species in the competition for light. However, little is understood of the role belowground root competition may play in invasion. We conducted an experiment to test the effect of root growth on the performance of an invasive shrub Cassia alata, a naturalized, non-invasive shrub Corchorus capsularis, and a native shrub Desmodium reticulatum. We compared seedling growth of the three species and their competitive ability in situ. The roots of the C. alata seedlings grew much faster than those of C. capsularis and D. reticulatum during the entire growth period although C. alata had shorter shoots than D. reticulatum. Furthermore, C. alata showed an apparent competition advantage compared to the other two species as evidenced by less biomass reduction in intraspecific competition and higher competitive effects in interspecific competition. Our study reveals that fast seedling root growth may be important in explaining the competitive advantages of invasive plants. Future studies should pay more attention to the belowground traits of invasive plants, the trade-off between shoot and root growth, and the role of root competition in affecting the population dynamics of invasive plants and the structures of invaded communities.  相似文献   

5.
Kin recognition has been demonstrated by plant biomass allocation and morphology traits as well as by nitrogen (N) uptake, but has not been examined from a nutrient-niche view yet. In this study, four species with distinct lifestyles, including Glycine max (L.) Merr. (herbaceous legume), Belamcanda chinensis (L.) DC. (herbaceous non-legume), Caesalpinia pulcherrima (L.) Sw. (woody legume), and Populus tomentosa (L.) Carr. (woody non-legume) were used to demonstrate kin recognition by estimating their biomass and allocation, as well as nutrient niches based on their uptake efficiency for N, phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe). For G. max, kin recognition was achieved by increased biomass, and by reduced nutrient-uptake efficiency of N, P, S, K, Ca, Mg, and Fe (decreased nutrient niches) to decrease nutrient competition among kin plants compared to the strangers. Although B. chinensis and C. pulcherrima had no biomass response, kin plants of B. chinensis increased, whereas C. pulcherrima decreased their S-uptake efficiency compare to strangers. Therefore, kin competition occurred in B. chinensis through increased nutrient niche whereas kin recognition occurred in C. pulcherrima through decreased nutrient niche. By comparison, P. tomentosa showed the co-occurrence of kin recognition and competition by increased root allocation and decreased P-uptake efficiency. These findings suggest that the biomass allocation and plant nutrient niches based on their nutrient-uptake efficiency can be used as potential parameters to identify kin recognition.  相似文献   

6.
Microalgae are ideal candidates for bioremediation and biotechnological applications. However, salinity and nutrient resource availability vary seasonally and between cultivation sites, potentially impacting on biomass productivity. The aim of this study was to screen pollutant-tolerant freshwater microalgae (Desmodesmus armatus, Mesotaenium sp., Scenedesmus quadricauda and Tetraedron sp.), isolated from Tarong power station ash-dam water, for their tolerance to cultivation at a range of salinities. To determine if biochemical composition could be manipulated, the effects of 4-day nutrient limitation were also determined. Microalgae were cultured at 2, 8, 11 and 18 ppt salinity, and nutrient uptake was monitored daily. Growth, total lipid, fatty acid (FA), and amino acid contents were quantified in biomass harvested while nutrient-replete and, after 4 days, nutrient-deplete. D. armatus showed the highest salinity tolerance actively growing in up to 18 ppt while Mesotaenium sp. was the least halotolerant with decreasing growth rates from 11 ppt. However, Mesotaenium sp. at 2 and 8 ppt had the highest biomass productivity and nutrient requirements of the four species, making it ideal for nutrient remediation of eutrophic freshwater effluents. Salinity and nutrient status had minimal influence on total lipid and FA contents in D. armatus and Mesotaenium sp., while nutrient depletion induced an increase of total lipid and FAs in S. quadricauda and Tetraedron sp., which was further increased with increasing salinity. As none of the growth conditions affected amino acid profiles of the species, these findings provide a basis for species selection based on site-specific salinity conditions and nutrient resource availability.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth performance, but their effectiveness varies depending on soil nitrogen (N) availability. To clarify the effectiveness of exogenous AMF along an N-fertilization gradient (0, 2, 10, 20, and 30 mM), the impacts of exogenous Rhizophagus irregularis and N on the growth, photochemical activity, and nutritional status of Populus?×?canadensis ‘Neva’ in natural soil were evaluated in a pot experiment. The results showed that the 10 mM N level was the optimal fertilization regime with the highest promotion effect on plant growth and the maximum quantum yield of photosystem II (PSII) (Fv/Fm). Excess N (20 and 30 mM) fertilization reduced the actual quantum yield of PSII (ФPSII) and the Fv/Fm of the plants. Regardless of the N availability, inoculated plants exhibited greater Fv/Fm values than did non-inoculated plants. The biomass of inoculated plants was significantly higher compared with the control under low N levels (0 and 2 mM). Under high N levels, inoculated plants showed significant increases in ФPSII. Moreover, the nutrient imbalance of plants inoculated with exogenous R. irregularis was eased by increasing P, Fe, Mn and Cu uptake in roots and higher P, Ca, Mg, Fe, Mn and Zn concentrations in leaves. Moreover, the Fv/Fm and ФPSII exhibited positive correlations with P, Ca, Mg and Zn concentrations in leaves. In conclusion, inoculation with exogenous R. irregularis can benefit plant fitness by improving the photochemical capacity and nutrient composition of poplar under different N levels.  相似文献   

8.
Camptotheca acuminata (C. acuminata) is utilized in preparation of drugs and as constituent in functional foods of China due to high camptothecin (CPT) content in different plant parts. Light intensity is one of the most critical factors which affect plant growth and secondary metabolites. Pot experiment was conducted to study the effect of light intensity (i.e., 100 % irradiance (control), 75 % irradiance, 50 % irradiance and 25 % irradiance) on contents of CPT, activity of enzymes and genes expression related to CPT biosynthesis of C. acuminata seedlings. The study examined total leaf biomass, CPT content, activities of tryptophan synthase (TSB) and tryptophan decarboxylase (TDC), and relative expression of TSB, TDC1, and TDC2 genes. Plants grown in 75 % irradiance possessed the greatest leaf biomass compared with 100 % light irradiance. Highest values of CPT contents were found after 60 days in plants grown in 50 % irradiance, followed by 25, 75 % and full sunlight. Furthermore, activities of TSB, TDC and relative expression of genes of TSB, TDC1, and TDC2, were significantly increased after 60 days of 50 % irradiance compared with full sunlight. Irradiance of 50 % up-regulated the expression of CPT biosynthesis-related genes and induced CPT biosynthesis. In addition to that lower or higher irradiance inhibited the expression of CPT biosynthesis-related genes and CPT biosynthesis. It is concluded that manipulating light intensity can be an effective means to achieve highest CPT yield in medicinal plants.  相似文献   

9.
The effects of plant growth regulators (PGRs) and organic elicitors (OEs) on in vitro propagation of Eucomis autumnalis was established. Three-year-old ex vitro grown plants from organogenesis of E. autumnalis and somatic embryogenesis (previously reported protocol) of Drimia robusta were investigated for antibacterial activity. In vitro propagation from leaf explants of E. autumnalis was established using different PGRs and OE treatments for mass propagation, biomass production and bioactivity analysis to supplement the use of wild plant material. Prolific shoots (16.0?±?0.94 shoots per explant) were obtained with MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium containing 100 mg l?1 haemoglobin (HB), 10 µM benzyladenine (BA) and 2 µM naphthaleneacetic acid (NAA). The shoots were rooted effectively with a combination of 2.5 µM indole-3-acetic acid and 5.0 µM indole-3-butyric acid. The plantlets were successfully acclimatized in a vermiculite-soil mixture (1:1 v/v) in the greenhouse. Three-year-old ex vitro-grown E. autumnalis and D. robusta plants derived via organogenesis and somatic embryogenesis respectively exhibited antibacterial activity and varied with PGR and OE treatments, plant parts and bacteria. The leaves of E. autumnalis ex vitro-derived from a combination of HB, BA and NAA followed by the individual treatments of BA and HB gave the best antibacterial activities (<?1 mg ml?1: minimum inhibitory concentration from 0.098 to 0.78 mg ml?1) against all tested pathogenic bacteria (Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa). The bulbs of D. robusta ex vitro-derived from solid culture with 10 µM picloram, 1 µM thidiazuron and 20 µM glutamine exhibited good antibacterial activity against E. faecalis, M. luteus and S. aureus when compared with other treatments and mother plants. The ex vitro-grown E. autumnalis and D. robusta biomass produced with PGRs along with OE treatments confirmed a good potent bioresource and can be used as antibacterial agents. The in vitro plant regeneration of E. autumnalis and D. robusta protocols and ex vitro plants could be used for conservation strategies, bioactivity and traditional medicinal use.  相似文献   

10.
Antarctica is one of the less prone environments for plant invasions, nevertheless a growing number of non-native species have been registered in the last decades with negative effects on native flora. Here we assessed adaptive phenotypic plasticity in three photoprotective traits (non-photochemical quenching, total soluble sugars, and de-epoxidation state of xanthophylls cycle), and fitness-related traits (maximum quantum yield, photosynthetic rate and total biomass) in the invasive species Poa annua and Deschampsia antarctica under current conditions of water availability and those projected by climate change models. In addition, two manipulative experiments in controlled and field conditions were conducted to evaluate the competitive ability and survival of both species under current and climate change conditions. Moreover, we performed an experiment with different water availabilities to assess cell damage as a potential mechanism involved in the competitive ability deployed in both species. Finally, was assessed the plasticity and biomass of both species subject to factorial abiotic scenarios (water × temperature, and water × nutrients) ranging from current to climate change condition. Overall, results showed that P. annua had greater phenotypic plasticity in photoprotective strategies, higher performance, and greater competitive ability and survival than D. antarctica under current and climate change conditions. Also, cell damage, assessed by lipid peroxidation, was significantly greater in D. antarctica when grown in presence of P. annua compared when grown alone. Finally, P. annua showed a greater plasticity and biomass than D. antarctica under the factorial abiotic scenarios, being more evident under a climate change scenario (i.e., higher soil moisture). Our study suggests that the high adaptive plasticity and competitive ability deployed by P. annua under current and climate change conditions allows it to cope with harsh abiotic conditions and could help explain its successful invasion in the Antarctica.  相似文献   

11.
Two ornamental plants of Althaea rosea Cav. and Malva crispa L. were exposed to various concentrations of lead (Pb) (0, 50, 100, 200 and 500 mg·kg?1) for 70 days to evaluate the accumulating potential and the tolerance characteristics. The results showed that both plant species grown normally under Pb stress, and A. rosea had a higher tolerance than M. crispa, while M. crispa had a higher ability in Pb accumulation than A. rosea. Besides, lower Pb concentration (50 mg·kg?1) stimulated the shoot biomass in both plant species. Pb accumulation in plants was consistent with the increase of Pb levels, and the main accumulation sites were the roots and the older leaves. In addition, the photosynthetic pigments content and chlorophyll fluorescence parameters were influenced by Pb stress. In such case, both of the plants could improve the activities of antioxidant enzymes of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the contents of the total soluble sugar and soluble protein, which reached the highest value at Pb 100 mg·kg?1, as well as the accumulation of the total thiols (T-SH) and non-protein thiols (NP-SH) to adapt to Pb stress. Thus, it provides the theoretical basis and possibility for ornamental plants of A. rosea and M. crispa in phytoremediation of Pb contaminated areas.  相似文献   

12.

Key message

Present study recommends DBH as independent variable of the derived allometric models and Biomass = a + b DBH 2 has been selected for total above-ground biomass, nutrients and carbon stock.

Abstract

Kandelia candel (L.) Druce is a shrub to small tree of the Sundarbans mangrove forest of Bangladesh. The aim of the study was to derive the allometric models for estimating above-ground biomass, nutrient and carbon stock in K. candel. A total of eight linear models with 64 regression equations were tested to derive the allometric models for biomass of each part of plant; and nutrients and carbon stock in total above-ground biomass. The best fitted allometric models were selected by considering the values of R 2, CV, R mse, MSerror, S a, S b, F value, AICc and Furnival Index. The selected allometric models were Biomass = 0.014 DBH2 + 0.03; √Biomass = 0.29 DBH ? 0.21; √Biomass = 0.66 √DBH ? 0.57; √Biomass = 1.19 √DBH ? 1.02; Biomass = 0.21 DBH2 + 0.12 for leaves, branches, bark, stem without bark and total above-ground biomass, respectively. The selected allometric models for Nitrogen, Phosphorous, Potassium and Carbon stock in total above-ground biomass were N = 0.39 DBH2 + 0.49, P = 0.77 DBH2 + 0.14, K = 0.87 DBH2 + 0.07 and C = 0.09 DBH2 + 0.05, respectively. The derived allometric models have included DBH as a single independent variable, which may give quick and accurate estimation of the above-ground biomass, nutrient and carbon stock in this species. This information may also contribute to a broader study of nutrient cycling, nutrient budgeting and carbon sequestration of the studied forest.
  相似文献   

13.
Abiotic global change factors, such as rising atmospheric CO2, and biotic factors, such as exotic plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the common reed, Phragmites australis, was introduced to North America over a century ago, but the belowground mechanisms underlying Phragmites invasion and persistence in natural systems remain poorly studied. For instance, Phragmites has a nitrogen (N) demand higher than native plant communities in many of the ecosystems it invades, but the source of the additional N is not clear. We exposed introduced Phragmites and native plant assemblages, containing Spartina patens and Schoenoplectus americanus, to factorial treatments of CO2 (ambient or +300 ppm), N (0 or 25 g m?2 year?1), and hydroperiod (4 levels), and focused our analysis on changes in root productivity as a function of depth and evaluated the effects of introduced Phragmites on soil organic matter mineralization. We report that non-native invasive Phragmites exhibited a deeper rooting profile than native marsh species under all experimental treatments, and also enhanced soil organic matter decomposition. Moreover, exposure to elevated atmospheric CO2 induced a sharp increase in deep root production in the invasive plant. We propose that niche separation accomplished through deeper rooting profiles circumvents nutrient competition where native species have relatively shallow root depth distributions; deep roots provide access to nutrient-rich porewater; and deep roots further increase nutrient availability by enhancing soil organic matter decomposition. We expect that rising CO2 will magnify these effects in deep-rooting invasive plants that compete using a tree-like strategy against native herbaceous plants, promoting establishment and invasion through niche separation.  相似文献   

14.

Background and aims

Herbaspirillum seropedicae (Hs) Z67 a diazotrophic endophyte was genetically engineered for secretion of 2-keto-D-gluconic acid by heterologous expression of genes for pqq synthesis and gluconate dehydrogenase to study its beneficial effect on plants.

Methods

Two plasmids, pJNK5, containing a 5.1 Kb pqq gene cluster of Acinetobacter calcoaceticus and pJNK6, carrying in addition the Pseudomonas putida KT2440 gluconate dehydrogenase (gad) operon were constructed in pUCPM18Gmr under Plac promoter. H. seropedicae Z67 transformants were monitored for P and K solubilization, cadmium (Cd) tolerance and rice growth promotion.

Results

Hs (pJNK5) secreted 23.5 mM gluconic acid and Hs (pJNK6) secreted 3.79 mM gluconic acid and 15.8 mM 2-ketogluconic acid respectively. Under aerobic conditions, Hs (pJNK5) and Hs (pJNK6) solubilized 239.7 μM and 457.7 μM P on HEPES rock phosphate and, 76.7 μM and 222.7 μM K on HRPF (feldspar), respectively, in minimal medium containing 50 mM glucose. Under N free minimal medium, similar effects of P and K solubilization were obtained. Hs (pJNK5) and Hs (pJNK6) inoculation increased the biomass, N, P, K content of rice plants (Gujarat – 17). These plants also accumulated 0.73 ng/g PQQ, and had improved growth and tolerance to CdCl2.

Conclusions

Incorporation of pqq and gad gene clusters in H. seropedicae Z67 imparted additional plant growth promoting traits of P and K solubilization and ability to alleviate Cd toxicity to the host plant.
  相似文献   

15.
A plant’s growth and fitness are influenced by species interactions, including those belowground. In primary successional systems, belowground organisms are known to have particularly important control over plant growth. Exotic plant invasions in these and other habitats may in part be explained by altered associations with belowground organisms compared to native plants. We investigated the growth responses of two foundation grasses on Great Lakes sand dunes, the native grass Ammophila breviligulata and the exotic grass Leymus arenarius, to two groups of soil organisms with important roles in dune succession: arbuscular mycorrhizal fungi (AMF) and plant-parasitic nematodes (PPN). We manipulated the presence/absence of two generalist belowground species known to occur in Great Lakes dunes, Rhizophagus intraradices (AMF) and Pratylenchus penetrans (PPN) in a factorial greenhouse experiment and assessed the biomass production and root architectural traits of the plants. There were clear differences in growth and above- and belowground architecture between Ammophila and Leymus, with Leymus plants being bigger, taller, and having longer roots than Ammophila. Inoculation with Rhizophagus increased above- and belowground biomass production by ~32% for both plant species. Inoculation with Pratylenchus decreased aboveground biomass production by ~36% for both plant species. However belowground, the exotic Leymus was significantly more resistant to PPN than the native Ammophila, and gained more benefits from AMF in belowground tri-trophic interactions than Ammophila. Overall, our results indicate that differences in plant architecture coupled with altered belowground interactions with AMF and PPN have the potential to promote exotic plant invasion.  相似文献   

16.
During tequila production, up to 75 % w/w of the Agave plant is discarded when leaves are removed from the stem. The discarded leaves represent an extensive amount of unexploited biomass that was used here for bioethanol production in no-input fermentations, where no acid or enzymatic hydrolysis, supplementation of nutrients or standardization of carbohydrate content occur. Ethanol yield from Agave leaf juice is unaffected by sterilization but reduced if fermentation is reliant solely on endogenous microorganisms. Non-Saccharomyces yeasts, including Kluyveromyces marxianus and Candida akabanensis, proved to be more robust than standard Saccharomyces spp. and yielded up to 88 % of the theoretical maximum ethanol from leaf juice. Combining leaf and stem juice, as from a whole plant, was predicted to maximize yield at up to 19,439 L/ha of ethanol from mature plants.  相似文献   

17.
Variability of 31 somatic hybrids of Solanum pinnatisectum Dun. with Solanum tuberosum L. for leaf morphology, plant vigor, resistance to Phytophthora infestans, ploidy level, and cytoplasm type was evaluated in vitro. The composition of these somatic hybrids was as follows: [S. pinnatisectum Dun. (2n = 2x = 24; cytoplasmic type Wγ) + S. tuberosum L. (2n = 4x = 48; cytoplasmic type Tß)]. Based on leaf morphology and plant growth vigor, plants were divided into three groups, including plants close to tbr parent with unlobed leaves, small plants with scarcely dissected leaves, and vigorous plants with asymmetrically and pinnately lobed leaves. Nine of the somatic hybrids were found to be highly resistant to P. infestans. Somatic hybrids were either tetraploid or hexaploid, with hexaploids being predominant. The cytoplasm of somatic hybrids was either Tßγ or Wßγ, with Tßγ being more common. Overall, in contrast to leaf morphology and growth vigor, level of resistance to P. infestans was not related to either ploidy level or type of cytoplasm. These findings demonstrate that early in vitro selection of promising hybrids can be useful in breeding programs.  相似文献   

18.
Environmental gradients and competition influence aquatic macrophyte distribution in estuaries. The competition-to-stress hypothesis states that some species are excluded from lower estuaries (high salinity) due to abiotic stress and others from upper estuaries (low salinity) by competition. The growth of Crinum americanum L. and Spartina alterniflora Loisel. in monoculture (10:0/0:10) and mixed culture (5:5) under different salinity levels (4/12/26) was analysed by a laboratory experiment (3 cultures × 3 sediment types × 3 replicate) to understand the role of competition and salinity on the distribution of these species in a tropical estuary as well as to verify whether the competition-to-stress hypothesis explains their zonation. We tested the hypothesis that S. alterniflora is not established in the upper estuary due to the effect of competition with C. americanum, whereas the latter presents restrictions to high salinity and has greater competitive ability in the upper estuary. Our data confirm the competition-to-stress hypothesis but not as proposed originally. We conclude that abiotic stress (low nutrient availability) is responsible for the absence of S. alterniflora in the upper estuary and that the competition between the two species is responsible for the absence of C. americanum in the lower estuary.  相似文献   

19.
Periphyton plays an important functional role in the retention of nutrients in aquatic ecosystems, especially phosphorus. We evaluated the effects of enrichment with N and P and the effect after 20 days of no additional N and P on periphyton on artificial substratum in open-bottom mesocosms. The aim was to jointly evaluate periphyton, phytoplankton and zooplankton in the presence of macrophytes. Experimental conditions simulated natural conditions and nutrient addition was based on the maximum concentration recorded in mesotrophic reservoir. Our hypothesis is that the periphyton is sensitive to the effects of N and P enrichment and its interruption, despite the positive response of phytoplankton and zooplankton. Two treatments were designed using open-bottom mesocosms (n = 3): control (no nutrient addition); NP+ (combined phosphorus and nitrogen addition). Sampling for the measurement of biotic and abiotic variables was performed, with 10 days of continuous enrichment, on the 3rd, 6th and 11th, and 20 days after enrichment had ended (31st day). Periphyton chlorophyll a, dry mass and algal density increased significantly with the addition of N and P and decreased 20 days after the interruption of the enrichment. The highest periphyton P content was found in the NP+ treatment. The enrichment had a positive effect on Chrysophyceae (Chromulina spp.) and rotifer (Polyarthra spp.) density and the interruption of enrichment favored Bacillariophyceae (Gomphonema sp.) and rotifers (Gastropus stylifer). Phytoplankton responded positively to enrichment. Along with the high macrophyte coverage over the experimental period, we evidenced the positive effect enrichment had on phytoplankton biomass and zooplankton abundance. Therefore, periphyton on artificial substrate was sensitive to effects of N and P enrichment and its interruption, responding promptly to changes in nutrient availability in a scenario of high competition and grazing.  相似文献   

20.
Transgenic potato (Solanum tuberosum L. cv. Desiree) plants expressing components of a novel cyanobacterial photorespiratory glycolate catabolism pathway were developed. Transgenic plant expressing glcD1 (glycolate dehydrogenase I) gene was referred to as synGDH and transgenic plants expressing gcl (glyoxylate carboligase) and tsr (tartronic semialdehyde reductase) genes simultaneously were designated as synGT. Both synGDH and synGT plants showed stable gene transformation, integration and expression. Enhanced glyoxylate contents in synGDH plants were detected as compared to synGT and non-transgenic (NT) plants. Phenotypic evaluation revealed that synGDH plants accumulated 11 % higher dry weight, while, tuber weight was 38 and 16 % higher than NT and synGT, respectively. Upon challenging the plants in high temperature and high light conditions synGDH plants maintained higher Fv/Fm and showed less bleaching of chlorophyll as compared to synGT and NT plants. These results indicate that genetic transformation of complete pathway in one plant holds promising outcomes in terms of biomass accumulation to meet future needs for food and energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号