首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Centromeric retrotransposons (CRs) are important component of the functional centromeres of rice chromosomes. To track the evolution of the CR elements in genus Oryza, we sequenced the orthologous region of the rice centromere 8 (Cen8) in O. granulata and analyzed transposons in this region. A total of 12 bacterial artificial chromosomes (BACs) that span the centromeric region in O. granulata were sequenced. The O. granulate centromeric sequences are composed of as much as 85% of transposons, higher than any other reported eukaryotic centromeres. Ten novel LTR retrotransposon families were identified but a single retrotransposon, Gran3, constitutes nearly 43% of the centromeric sequences. Integration times of complete LTR retrotransposons indicate that the centromeric region had a massive insertion of LTR retrotransposons within 4.5 million year (Myr), which indicates a recent expansion of the centromere in O. granulata after the radiation of the Oryza genus. Two retrotransposon families, OGRetro7 and OGRetro9, show sequence similarity with the canonical CRs from rice and maize. Both OGRetro7 and OGRetro9 are highly concentrated in the centromeres of O. granulata chromosomes. Furthermore, strong hybridization signals were detected in all Oryza species but in O. brachyantha with the OGRetro7 and OGRetro9 probes. Characterization of the centromeric retrotransposons in O. granulata confirms the conservation of the CRs in the Oryza genus and provides a resource for comparative analysis of centromeres and centromere evolution among the Oryza genus and other genomes.  相似文献   

2.
Sequence organization of barley centromeres   总被引:14,自引:1,他引:13       下载免费PDF全文
By sequencing, fingerprinting and in situ hybridization of a centromere-specific large insert clone (BAC 7), the sequence organization of centromeric DNA of barley could be elucidated. Within 23 kb, three copies of the Ty3/gypsy-like retroelement cereba were present. Two elements of ~7 kb, arranged in tandem, include long terminal repeats (LTRs) (~1 kb) similar to the rice centromeric retrotransposon RIRE 7 and to the cereal centromeric sequence family, the primer binding site, the complete polygene flanked by untranslated regions, as well as a polypurine tract 5′ of the downstream LTR. The high density (~200 elements/centromere) and completeness of cereba elements and the absence of internally deleted elements and solo LTRs from the BAC 7 insert represent unique features of the barley centromeres as compared to those of other cereals. Obviously, the conserved cereba elements together with barley-specific G+C-rich satellite sequences constitute the major components of centromeric DNA in this species.  相似文献   

3.
4.
The chromosomal location of centromere-specific histone H3 (CENH3) is the assembly site for the kinetochore complex of active centromeres. Chromatin immunoprecipitation data indicated that CENH3 interacts in barley with cereba, a centromeric retroelement (CR)-like element conserved among cereal centromeres and barley-specific GC-rich centromeric satellite sequences. Anti-CENH3 signals on extended chromatin fibers always colocalized with the centromeric sequences but did not encompass the entire area covered by such centromeric repeats. This indicates that the CENH3 protein is bound only to a fraction of the centromeric repeats. At mitotic metaphase, CENH3, histone H3, and serine 10 phosphorylated histone H3 predominated within distinct structural subdomains of the centromere, as demonstrated by immunogold labeling for high resolution scanning electron microscopy.  相似文献   

5.
The centromeric retrotransposon (CR) family in the grass species is one of few Ty3-gypsy groups of retroelements that preferentially transpose into highly specialized chromosomal domains. It has been demonstrated in both rice and maize that CRR (CR of rice) and CRM (CR of maize) elements are intermingled with centromeric satellite DNA and are highly concentrated within cytologically defined centromeres. We collected all of the CRR elements from rice chromosomes 1, 4, 8, and 10 that have been sequenced to high quality. Phylogenetic analysis revealed that the CRR elements are structurally diverged into four subfamilies, including two autonomous subfamilies (CRR1 and CRR2) and two nonautonomous subfamilies (noaCRR1 and noaCRR2). The CRR1/CRR2 elements contain all characteristic protein domains required for retrotransposition. In contrast, the noaCRR elements have different structures, containing only a gag or gag-pro domain or no open reading frames. The CRR and noaCRR elements share substantial sequence similarity in regions required for DNA replication and for recognition by integrase during retrotransposition. These data, coupled with the presence of young noaCRR elements in the rice genome and similar chromosomal distribution patterns between noaCRR1 and CRR1/CRR2 elements, suggest that the noaCRR elements were likely mobilized through the retrotransposition machinery from the autonomous CRR elements. Mechanisms of the targeting specificity of the CRR elements, as well as their role in centromere function, are discussed.  相似文献   

6.
Rice (Oryza sativa L.) centromeres are composed of 155-bp satellite repeats (CentO), centromere-specific retrotransposon (CRR), and a variety of other repeats. Previous studies have shown that CentO and CRR elements are both parts of the functional centromere/kinetochore complex. In this study, a naturally occurring karyotype rearrangement involving a reciprocal translocation between chromosomes 9 and 11 in an indica rice Zhongxian 3037 has been identified. The recombinant centromere in Chr11L?·?9L has two CentO tandem arrays, separated by a long array of 5S rDNAs. Chromatin immunoprecipitation and immunostaining showed that centromere-specific histone H3 (cenH3) variant was bound to the two flanking CentO arrays, but not to the 5S rDNAs residing between the CentO repeats. No obvious difference was detected in H3K4me2 and H3K9ac modification of the 5S rDNAs between the wild type and the mutant. Therefore, the translocation results in a recombinant stable chromosome with interrupted centromeric domains. A lack of cenH3 binding in 5S rDNA sequences residing within the centromeric core suggests that not all centromeric sequences confer centromere identity in rice.  相似文献   

7.
A 745 bp sequence (pSau3A9) located at the centromeres of several cereal species was isolated from a sorghum BAC library by Jiang et al. (1996, Proc. Natl Acad. Sci. USA, 93, 14210-14213). We have amplified a partially homologous 809 bp sequence from barely genomic DNA by PCR and localized it to the centromeres of barley, wheat and rye chromosomes by fluorescent in situ hybridization (FISH). Sequence analysis showed this barley homolog of pSau3A9 to have high similarity to the integrase region of the polyprotein gene of Ty3/gypsy group retrotransposons. Using this integrase sequence as a probe, several clones were isolated from a lambda library constructed of genomic barley DNA. One of the lambda clones contained coding regions for all five catalytic sites characteristic of the retrotransposon polyprotein. Two direct repeats flanking the polyprotein gene are homologous to the cereal centromeric sequence described by Aragón-Alcaide et al. (1996, Chromosoma, 105, 261-268) and may represent all or part of the long-terminal repeats (LTRs). Different plasmid subclones containing various regions of the lambda clone were used in FISH to show that the entire polyprotein gene and upstream flanking sequences, including the presumed LTR, are present at barley centromeres. The preferential (or exclusive) localization of an apparently complete retroelement within the centromeric regions of several cereal species raises interesting questions about its role in karyotype evolution and centromere function.  相似文献   

8.
The structural and functional aspects of two specific centromeres, one drawn from the animal kingdom (Drosophila) and the other from the plant kingdom (maize), are compared. Both cases illustrate an epigenetic component to centromere specification. The observations of neocentromeres in Drosophila and inactive centromeres in maize constitute one line of evidence for this hypothesis. Another common feature is the divisibility of centromere function with reduced stability as the size decreases. The systems differ in that Drosophila has no common sequence repeat at all centromeres, whereas maize has a 150-bp unit present in tandem arrays together with a centromere-specific transposon, centromere retrotransposon maize, present at all primary constrictions. Aspects of centromere structure known only from one or the other system might be common to both, namely, the presence of centromere RNAs in the kinetochore as found in maize and the organization of the centromeric histone 3 in tetrameric nucleosomes.  相似文献   

9.
10.
Oryza officinalis (CC, 2n=24) and Oryza rhizomatis (CC, 2n=24) belong to the Oryza genus, which contains more than 20 identified wild rice species. Although much has been known about the molecular composition and organization of centromeres in Oryza sativa, relatively little is known of its wild relatives. In the present study, we isolated and characterized a 126-bp centromeric satellite (CentO-C) from three bacterial artificial chromosomes of O. officinalis. In addition to CentO-C, low abundance of CentO satellites is also present in O. officinalis. In order to determine the chromosomal locations and distributions of CentO-C (126-bp), CentO (155 bp) and TrsC (366 bp) satellite within O. officinalis, fluorescence in situ hybridization examination was done on pachytene or metaphase I chromosomes. We found that only ten centromeres (excluding centromere 7 and 2) contain CentO-C arrays in O. officinalis, while centromere 7 comprises CentO satellites, and centromere 2 is devoid of any detectable satellites. For TrsC satellites, it was detected at multiple subtelomeric regions in O. officinalis, however, in O. rhizomatis, TrsC sequences were detected both in the four centromeric regions (CEN 3, 4, 10, 11) and the multiple subtelomeric regions. Therefore, these data reveal the evolutionary diversification pattern of centromere DNA within/or between close related species, and could provide an insight into the dynamic evolutionary processes of rice centromere.  相似文献   

11.
Retrotransposons with long terminal repeats (LTRs) more than 3 kb are not frequent in most eukaryotic genomes. Rice LTR retrotransposon, Retrosat2, has LTRs greater than 3.2 kb and two open reading frames (ORF): ORF1 encodes enzymes for retrotransposition whereas no function can be assigned to ORF0 as it is not found in any other organism. A variety of experimental and in silico approaches were used to determine the origin of Retrosat2 and putative function of ORF0. Our data show that not only is Retrosat2 highly abundant in the Oryza genus, it may yet be active in rice. Homologs of Retrosat2 were identified in maize, sorghum, Arabidopsis and other plant genomes suggesting that the Retrosat2 family is of ancient origin. Several putatively cis-acting elements, some multicopy, that regulate retrotransposon replication or responsiveness to environmental factors were found in the LTRs of Retrosat2. Unlike the ORF1, the ORF0 sequences from Retrosat2 and homologs are divergent at the sequence level, 3D-structures and predicted biological functions. In contrast to other retrotransposon families, Retrosat2 and its homologs are dispersed throughout genomes and not concentrated in the specific chromosomal regions, such as centromeres. The genomic distribution of Retrosat2 homologs varies across species which likely reflects the differing evolutionary trajectories of this retrotransposon family across diverse species.  相似文献   

12.
The availability of complete or nearly complete genome sequences from several plant species permits detailed discovery and cross‐species comparison of transposable elements (TEs) at the whole genome level. We initially investigated 510 long terminal repeat‐retrotransposon (LTR‐RT) families comprising 32 370 elements in soybean (Glycine max (L.) Merr.). Approximately 87% of these elements were located in recombination‐suppressed pericentromeric regions, where the ratio (1.26) of solo LTRs to intact elements (S/I) is significantly lower than that of chromosome arms (1.62). Further analysis revealed a significant positive correlation between S/I and LTR sizes, indicating that larger LTRs facilitate solo LTR formation. Phylogenetic analysis revealed seven Copia and five Gypsy evolutionary lineages that were present before the divergence of eudicot and monocot species, but the scales and timeframes within which they proliferated vary dramatically across families, lineages and species, and notably, a Copia lineage has been lost in soybean. Analysis of the physical association of LTR‐RTs with centromere satellite repeats identified two putative centromere retrotransposon (CR) families of soybean, which were grouped into the CR (e.g. CRR and CRM) lineage found in grasses, indicating that the ‘functional specification’ of CR pre‐dates the bifurcation of eudicots and monocots. However, a number of families of the CR lineage are not concentrated in centromeres, suggesting that their CR roles may now be defunct. Our data also suggest that the envelope‐like genes in the putative Copia retrovirus‐like family are probably derived from the Gypsy retrovirus‐like lineage, and thus we propose the hypothesis of a single ancient origin of envelope‐like genes in flowering plants.  相似文献   

13.
The centromere of eukaryotic chromosomes is essential for the faithful segregation and inheritance of genetic information. In the majority of eukaryotic species, centromeres are associated with highly repetitive DNA, and as a consequence, the boundary for a functional centromere is difficult to define. In this study, we demonstrate that the centers of rice centromeres are occupied by a 155-bp satellite repeat, CentO, and a centromere-specific retrotransposon, CRR. The CentO satellite is located within the chromosomal regions to which the spindle fibers attach. CentO is quantitatively variable among the 12 rice centromeres, ranging from 65 kb to 2 Mb, and is interrupted irregularly by CRR elements. The break points of 14 rice centromere misdivision events were mapped to the middle of the CentO arrays, suggesting that the CentO satellite is located within the functional domain of rice centromeres. Our results demonstrate that the CentO satellite may be a key DNA element for rice centromere function.  相似文献   

14.
Centromeric chromatin in most eukaryotes is composed of highly repetitive centromeric retrotransposons and satellite repeats that are highly variable even among closely related species. The evolutionary mechanisms that underlie the rapid evolution of centromeric repeats remain unknown. To obtain insight into the evolution of centromeric repeats following polyploidy, we studied a model diploid progenitor (Gossypium raimondii, D‐genome) of the allopolyploid (AD‐genome) cottons, G. hirsutum and G. barbadense. Sequence analysis of chromatin‐immunoprecipitated DNA showed that the G. raimondii centromeric repeats originated from retrotransposon‐related sequences. Comparative analysis showed that nine of the 10 analyzed centromeric repeats were absent from the centromeres in the A‐genome and related diploid species (B‐, F‐ and G‐genomes), indicating that they colonized the centromeres of D‐genome lineage after the divergence of the A‐ and D‐ ancestral species or that they were ancestrally retained prior to the origin of Gossypium. Notably, six of the nine repeats were present in both the A‐ and D‐subgenomes in tetraploid G. hirsutum, and increased in abundance in both subgenomes. This finding suggests that centromeric repeats may spread and proliferate between genomes subsequent to polyploidization. Two repeats, Gr334 and Gr359 occurred in both the centromeres and nucleolar organizer regions (NORs) in D‐ and AD‐genome species, yet localized to just the NORs in A‐, B‐, F‐, and G‐genome species. Contained within is a story of an established centromeric repeat that is eliminated and allopolyploidization provides an opportunity for reinvasion and reestablishment, which broadens our evolutionary understanding behind the cycles of centromeric repeat establishment and targeting.  相似文献   

15.
Brachypodium distachyon is a well‐established model monocot plant, and its small and compact genome has been used as an accurate reference for the much larger and often polyploid genomes of cereals such as Avena sativa (oats), Hordeum vulgare (barley) and Triticum aestivum (wheat). Centromeres are indispensable functional units of chromosomes and they play a core role in genome polyploidization events during evolution. As the Brachypodium genus contains about 20 species that differ significantly in terms of their basic chromosome numbers, genome size, ploidy levels and life strategies, studying their centromeres may provide important insight into the structure and evolution of the genome in this interesting and important genus. In this study, we isolated the centromeric DNA of the B. distachyon reference line Bd21 and characterized its composition via the chromatin immunoprecipitation of the nucleosomes that contain the centromere‐specific histone CENH3. We revealed that the centromeres of Bd21 have the features of typical multicellular eukaryotic centromeres. Strikingly, these centromeres contain relatively few centromeric satellite DNAs; in particular, the centromere of chromosome 5 (Bd5) consists of only ~40 kb. Moreover, the centromeric retrotransposons in B. distachyon (CRBds) are evolutionarily young. These transposable elements are located both within and adjacent to the CENH3 binding domains, and have similar compositions. Moreover, based on the presence of CRBds in the centromeres, the species in this study can be grouped into two distinct lineages. This may provide new evidence regarding the phylogenetic relationships within the Brachypodium genus.  相似文献   

16.
J T Miller  F Dong  S A Jackson  J Song  J Jiang 《Genetics》1998,150(4):1615-1623
Several distinct DNA fragments were subcloned from a sorghum (Sorghum bicolor) bacterial artificial chromosome clone 13I16 that was derived from a centromere. Three fragments showed significant sequence identity to either Ty3/gypsy- or Ty1/copia-like retrotransposons. Fluorescence in situ hybridization (FISH) analysis revealed that the Ty1/copia-related DNA sequences are not specific to the centromeric regions. However, the Ty3/gypsy-related sequences were present exclusively in the centromeres of all sorghum chromosomes. FISH and gel-blot hybridization showed that these sequences are also conserved in the centromeric regions of all species within Gramineae. Thus, we report a new retrotransposon that is conserved in specific chromosomal regions of distantly related eukaryotic species. We propose that the Ty3/gypsy-like retrotransposons in the grass centromeres may be ancient insertions and are likely to have been amplified during centromere evolution. The possible role of centromeric retrotransposons in plant centromere function is discussed.  相似文献   

17.
In higher eukaryotes, centromeres are typically composed of megabase‐sized arrays of satellite repeats that evolve rapidly and homogenize within a species' genome. Despite the importance of centromeres, our knowledge is limited to a few model species. We conducted a comprehensive analysis of common bean (Phaseolus vulgaris) centromeric satellite DNA using genomic data, fluorescence in situ hybridization (FISH), immunofluorescence and chromatin immunoprecipitation (ChIP). Two unrelated centromere‐specific satellite repeats, CentPv1 and CentPv2, and the common bean centromere‐specific histone H3 (PvCENH3) were identified. FISH showed that CentPv1 and CentPv2 are predominantly located at subsets of eight and three centromeres, respectively. Immunofluorescence‐ and ChIP‐based assays demonstrated the functional significance of CentPv1 and CentPv2 at centromeres. Genomic analysis revealed several interesting features of CentPv1 and CentPv2: (i) CentPv1 is organized into an higher‐order repeat structure, named Nazca, of 528 bp, whereas CentPv2 is composed of tandemly organized monomers; (ii) CentPv1 and CentPv2 have undergone chromosome‐specific homogenization; and (iii) CentPv1 and CentPv2 are not likely to be commingled in the genome. These findings suggest that two distinct sets of centromere sequences have evolved independently within the common bean genome, and provide insight into centromere satellite evolution.  相似文献   

18.
The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the chromosomes of Brachypodium, wheat, and rice. The genes present in pericentromeres of the basic set of seven chromosomes of wheat and the Triticeae, and the 80 rice centromeric genes spanning the CENH3 binding domain of centromeres 3, 4, 5, 7, and 8 were used as “anchor” markers to identify centromere locations in the B. distachyon chromosomes. A total of 53 B. distachyon bacterial artificial chromosome (BAC) clones anchored by wheat pericentromeric expressed sequence tags (ESTs) were used as probes for BAC-fluorescence in situ hybridization (FISH) analysis of B. distachyon mitotic chromosomes. Integrated sequence alignment and BAC-FISH data were used to determine the approximate positions of active and inactive centromeres in the five B. distachyon chromosomes. The following syntenic relationships of the centromeres for Brachypodium (Bd), rice (R), and wheat (W) were evident: Bd1-R6, Bd2-R5-W1, Bd3-R10, Bd4-R11-W4, and Bd5-R4. Six rice centromeres syntenic to five wheat centromeres were inactive in Brachypodium chromosomes. The conservation of centromere gene synteny among several sets of homologous centromeres of three species indicates that active genes can persist in ancient centromeres with more than 40 million years of shared evolutionary history. Annotation of a BAC contig spanning an inactive centromere in chromosome Bd3 which is syntenic to rice Cen8 and W7 pericentromeres, along with BAC FISH data from inactive centromeres revealed that the centromere inactivation was accompanied by the loss of centromeric retrotransposons and turnover of centromere-specific satellites during Bd chromosome evolution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号