首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Fleshy hypogeous fungi produce scents that enable mycophagous mammals and invertebrates to locate them and disperse their spores. The European wild boar (Sus scrofa) was introduced in central Argentina in 1900s and later expanded into Patagonia. Here, we determined the diversity and abundance of fungal taxa, and the frequency of hypogeous fungal spores in wild boar feces in Patagonia. We collected fecal samples on Isla Victoria, Nahuel Huapi National Park, and identified fungi using microscope and DNA metabarcoding of ITS2 rDNA. Hypogeous fungal spores occurred in almost all fecal samples. The most abundant species belonged to the genera Hysterangium, Melanogaster, Radiigera and Gautieria. In addition to the symbiotrophic hypogeous taxa, we also identified numerous pathotrophic and saprotrophic taxa. Not only diverse native hypogeous fungi, but also introduced ones are part of the diet of the wild boar in forests of Patagonia. If viable, introduced fungi are being dispersed as far as 2.5 km from the nearest plantation, highlighting how the introduced wild boar might alter the local distribution and composition of fungal communities.  相似文献   

2.
In order to assess the possible contribution of bolboceratine beetles to the dispersal of mycorrhizal fungal spores, faeces and/or gut contents of adults of several species and genera obtained from burrows or collected at lights at night were examined microscopically. Two species of Blackbolbus ( frontalis and fucinus ) were found to have fed on different species of hypogeous sporocarps (truffles). Furthermore, adults of Bbo. frontalis were found in burrows with truffles of the genera Amarrendia , Hysterangium and Scleroderma . Specimens of some Blackburnium , Bolboleaus and Bolborhachium species, on the other hand, were found to have ingested diffuse glomeralean mycelium and spores along with varying quantities of soil. Limited evidence of broad-scale distribution of spores was obtained. Some Scleroderma truffles found in burrows of Bbo. frontalis were honeycombed and inhabited by numerous nitidulid beetles identified as Thalycrodes mixta . Two truffles identified as Hysterangium found in soil close to a burrow of Bbo. frontalis were infested with nematodes.  相似文献   

3.
Díez J  Manjón JL  Martin F 《Mycologia》2002,94(2):247-259
Terfezia and Tirmania, so called desert truffles, are mycorrhizal fungi mostly endemic to arid and semi-arid areas of the Mediterranean Region, where they are associated with Helianthemum species. The aim of this work was to study the phylogenetic relationships in these pezizalean hypogeous fungi. The restriction fragment length polymorphism (RFLP) and DNA sequences of internal transcribed spacers (ITS) of the nuclear rDNA were studied for several morphological species, Terfezia arenaria, T. boudieri, T. claveryi, T. leptoderma, T. terfezioides (=Mattirolomyces terfezioides), Tirmania nivea and T. pinoyi. The sequences were analyzed with distance and parsimony methods. Phylogenetic analyses indicated a close genetic relationship between Tirmania and Terfezia. They may have arisen from a single evolutionary lineage of pezizalean fungi that developed the hypogeous habit as an adaptation to heat and drought in Mediterranean ecosystems. This analysis also supports the re-establishment of the genus Mattirolomyces. The genera Tirmania and Terfezia were monophyletic, and morphological species corresponded to phylogenetic species. The Tirmania clade comprises desert truffles with smooth spores and amyloid asci, which were found in deserts. The Terfezia clade grouped species found in semi-arid habitats having ornamented and spherical spores. These species are adapted to exploit different types of soil (either acid or basic soils) in association with specific hosts (either basophilous or acidophilous species). Although other factors might also play a role, host specialization and edaphic tolerances (fungus and/or host tolerances) might be the key in the species diversity of these genera.  相似文献   

4.
温杨雪  赵博  罗巧玉  贾云龙  冯涛  王强 《菌物学报》2021,40(10):2562-2578
超载过牧以及全球气候变化等导致大部分青藏高原高寒草地呈现持续退化态势。青藏高原高寒草地退化致使地上植物群落逐渐发生更替,地下土壤微生物群落多样性和丰富度发生改变。本文旨在探析青藏高原高寒草地丛枝菌根(arbuscular mycorrhizal,AM)真菌的分布特征、对近自然恢复的生理生态效应及其作用机制。青藏高原高寒草地中已报道4目14属61种AM真菌,约占已知AM真菌物种的20%。高寒草地禾本科植物根围AM真菌物种丰度最高,而莎草科植物根围AM真菌孢子密度最高。3种高寒草地植被类型中,高寒草原AM真菌丰度最高(33种),山地灌丛草原次之(32种),高寒草甸最低(22种)。高寒草原以光壁无梗囊霉Acaulospora laevis和闪亮和平囊霉Pacispora scintillans为优势种,山地灌丛草原以摩西斗管囊霉Funneliformis mosseae为优势种,高寒草甸以光壁无梗囊霉A. laevis、近明球囊霉Claroideoglomus claroideum和闪亮和平囊霉P. scintillans为优势种。高寒草地土著AM真菌与植物构建的菌根网络可以通过调节营养元素吸收、分配,促进植物建植和生长;但是毒杂草入侵可以改变土著AM真菌物种多样性和菌根网络,限制本地植被的实际生态位扩张。退化高寒草地中,AM真菌群落具有高的环境适应性和恢复力,其不仅调控地上植物群落建植和多样性,同时AM真菌建植也增加了代谢产物-球囊霉素相关土壤蛋白产生,进而协同改善地下土壤微生态系统,为退化高寒草地早期植被恢复塑造土壤生境。因此,AM真菌在退化高寒草地近自然恢复中具有较大的应用潜力。  相似文献   

5.
The strength and direction of plant response to inoculation with arbuscular mycorrhizal fungi (AM fungi) is dependent on both abiotic and biotic contexts, often generating patterns of AM fungal mediation of plant adaptation. However, knowledge of plant‐community level effects of these interactions in grassland restoration is limited. We conducted a field inoculation experiment by inoculating five plant species native to a drier prairie and five plant species native to a moister prairie with mycorrhizal fungal communities from each prairie type. Species were paired by genus or family to account for phylogenetic effects. The inoculated plants were transplanted to study plots seeded with a restoration seed mix. Plots were manipulated to create either moister or drier conditions similar to environments of the plant species and mycorrhizal communities. In both transplanted and seeded plant species, we found that only drier prairie‐range species benefited from moisture‐regime matched AM fungal inoculum. Other seeded prairie plant species demonstrated a negative response to inoculation, likely due to the earlier successional stage of these species. Additionally, nonseeded plants benefited from inoculation in different ways: native nonseeded plants had highest cover with drier prairie inoculum in drier conditions, while nonnative plants had highest cover with moister prairie‐origin inoculum. These results suggest that use of local AM fungi may be particularly important in restorations at drier sites, even at relatively small differences in moisture availability. Further, specific knowledge of relative responsiveness of seeded plant species and nonseeded plant species to AM fungal inoculation will be useful in planning restorations.  相似文献   

6.
Across three tropical Australian sclerophyll forest types, site-specific environmental variables could explain the distribution of both quantity (abundance and biomass) and richness (genus and species) of hypogeous fungi sporocarps. Quantity was significantly higher in the Allocasuarina forest sites that had high soil nitrogen but low phosphorous. Three genera of hypogeous fungi were found exclusively in Allocasuarina forest sites including Gummiglobus, Labyrinthomyces and Octaviania, as were some species of Castoreum, Chondrogaster, Endogone, Hysterangium and Russula. However, the forest types did not all group according to site-scale variables and subsequently the taxonomic assemblages were not significantly different between the three forest types. At site scale, significant negative relationships were found between phosphorous concentration and the quantity of hypogeous fungi sporocarps. Using a multivariate information theoretic approach, there were other more plausible models to explain the patterns of sporocarp richness. Both the mean number of fungal genera and species increased with the number of Allocasuarina stems, at the same time decreasing with the number of Eucalyptus stems. The optimal conditions for promoting hypogeous fungi sporocarp quantity and sporocarp richness appear to be related to the presence and abundance of Allocasuarina (Casuarinaceae) host trees. Allocasuarina tree species may have a higher host receptivity for ectomycorrhizal hypogeous fungi species that provide an important food resource for Australian mycophagous animals.  相似文献   

7.
Small forest dwelling mammals are considered to be major consumers and vectors of hypogeous ectomycorrhizal (ECM) fungi, which have lost the ability of active spore discharge. Fungal spore dispersal by mycophagy is deemed an important process involved in forest regeneration, resilience and vitality, primarily based on evidence from Australia and the Pacific Northwestern USA, but is poorly known for Central European mountainous forests thus far. Small mammal mycophagy was investigated by live trapping and microscopical analysis of faecal samples. All small mammal species recorded (Myodes glareolus, Microtus agrestis, Pitymys subterraneus, Apodemus spp., Glis glis, Sorex spp.) had ingested spores of ECM fungi, albeit in varying amounts. My. glareolus was found to be the most important vector of ECM fungal spores, both in quantity and diversity. Species of the genus Sorex seem to play a hitherto underestimated role as dispersers of fungal spores. Glis glis is likely to be an important vector owing to its large home range. Hypogeous ECM basidiomycetes accounted for most spores found in the faecal samples. The frequency of various genera of hypogeous ECM ascomycetes and ECM epigeous fungi was much lower. Comparison with null models indicated a non-random structure of the mycophagy network similar to other mutualistic bipartite networks. Mycophagy can be considered (1) to contribute to nutrition of small forest mammals, (2) to play a pivotal role for forest regeneration and functioning by providing mycorrhizal inoculum to tree seedlings and (3) to be vital for reproduction and diversity of the still poorly known hypogeous fungi.  相似文献   

8.
Arbuscular mycorrhizal (AM) fungi are widespread root symbionts that often improve the fitness of their plant hosts. We tested whether local adaptation in mycorrhizal symbioses would shape the community structure of these root symbionts in a way that maximizes their symbiotic functioning. We grew a native prairie grass (Andropogon gerardii) with all possible combinations of soils and AM fungal inocula from three different prairies that varied in soil characteristics and disturbance history (two native prairie remnants and one recently restored). We identified the AM fungi colonizing A. gerardii roots using PCR amplification and cloning of the small subunit rRNA gene. We observed 13 operational taxonomic units (OTUs) belonging to six genera in three families. Taxonomic richness was higher in the restored than the native prairies with one member of the Gigaspora dominating the roots of plants grown with inocula from native prairies. Inoculum source and the soil environment influenced the composition of AM fungi that colonized plant roots. Correspondingly, host plants and AM fungi responded significantly to the soil–inoculum combinations such that home fungi often had the highest fitness and provided the greatest benefit to A. gerardii. Similar patterns were observed within the soil–inoculum combinations originating from two native prairies, where five sequence types of a single Gigaspora OTU were virtually the only root colonizers. Our results indicate that indigenous assemblages of AM fungi were adapted to the local soil environment and that this process occurred both at a community scale and at the scale of fungal sequence types within a dominant OTU.  相似文献   

9.
The aim of plant restoration projects is usually the recovery of the original native plant communities. However, in The Netherlands after restoration management practices have been completed, novel plant communities often develop and there is a return of only 50% to 60% of the desired plant species. A potential cause could be that the biological communities of the soil develop insufficiently to support a high diversity of plant species. This research project focused on the role of the soil biological community in controlling plant diversity. In particular, this project studied whether arbuscular mycorrhizal fungi a major component of the soil biological community, promote native plants. Field research indicated that arbuscular mycorrhizal fungi were present in the soil, even though colonization levels of arbuscules were low, 10% or less. The greatest abundance of arbuscular mycorrhizal fungi was observed at locations where the top soil was removed and where nutrient concentrations were reduced. The results of pot experiments showed that applied arbuscular mycorrhizal fungi significantly promoted the growth of native plant species. A cost benefit analysis revealed that the benefits of applying arbuscular mycorrhizal fungi exceeded the costs. This makes the application of arbuscular mycorrhizal fungi an attractive proposition.  相似文献   

10.
Biological soil crusts (biocrusts) and arbuscular mycorrhizal (AM) fungi are communities of soil organisms often targeted to assist in the achievement of multiple ecological restoration goals. In drylands, benefits conferred from biocrust and AM fungal inoculation, such as improved native plant establishment and soil stabilization, have primarily been studied separately. However, comparisons between these two types of soil inoculants and investigations into potential synergies between them, particularly at the plant community scale, are needed to inform on‐the‐ground management practices in drylands. We conducted two full‐factorial experiments—one in greenhouse mesocosms and one in field plots—to test the effects of AM fungal inoculation, biocrust inoculation, and their interaction on multiple measures of dryland restoration success. Biocrust inoculation promoted soil stabilization and plant drought tolerance, but had mixed effects on native plant diversity (positive in greenhouse, neutral in field) and productivity (negative in greenhouse, neutral in field). In greenhouse mesocosms, biocrust inoculation reduced plant biomass, which was antagonistic to % root length colonized by AM fungi. Inoculation with native or commercial AM fungi did not influence plant establishment, drought tolerance, or soil stabilization in either study, and few synergistic effects of simultaneous inoculation of AM fungi and biocrusts were observed. These results suggest that, depending on the condition of existing soil communities, inoculation with AM fungi may not be necessary to promote dryland restoration goals, while inoculation with salvaged biocrust inoculation may be beneficial in some contexts.  相似文献   

11.
块菌是指Tuber属的真菌种类,属于子囊菌门(Ascomycota),生在地下,其中包含着世界上最美味和价值最昂贵的食用菌.中国食与药用真菌文化悠久,历代本草都不乏各种菌类的记载,但在本草中记载的与块菌有关系的菌类唯有1245年陈仁玉编撰的“菌谱”中称之为“麦蕈”和俗名为“麦丹蕈”的一种地下真菌.日本本草对“麦蕈”也屡有记载,并把“麦蕈”叫“地肾”和“松露”.这是“松露”一名的最早记载,“麦蕈”或“松露”可能是被现代菌物学称之为须腹菌(Rhizopogon spp.)的真菌种类.因而,“松露”一名虽是汉字,但是所指并非真正的块菌,应是须腹菌(Rhizopogon spp.),也称“假块菌”(false truffle),所以松露和块菌寓意各异.产于我国西南地区的食用黑块菌主要是印度块菌(Tuber indi-cum)或中华块菌(T.sinernse)、夏块菌(T.aestivum=T.uncinatu)和拟喜马拉雅块菌(T.pseudohimalayense=T.pseudoexcavatum),近年来身价倍增,成为中国野生食用菌出口种类中名列前三甲的菌类,在世界块菌市场上也颇受欢迎.喜马拉雅块菌(T.himalayense)在我国尚未发现它的踪迹.印度块菌和中华块菌形态上有差异,若把中国产的类似黑孢块菌的黑块菌统称为印度块菌(T.indicum)尚值得商榷.中华块菌或印度块菌形态和遗传变异多样,尚需进一步研究.2010年在云南和四川相继发现的大型香味浓郁的白块菌,近似于波氏块菌(T.borchii)组的块菌,颇具研究和巨大的商业价值,表明我国块菌资源比原有记载的要丰富的多.由于利益之驱动和疏于管理,掠夺式的采收方法造成了块菌产区生态环境毁灭性的破坏,一些商业化采集区的块菌已濒临灭绝,中国西南地区的块菌资源的保护问题迫在眉睫.本文对产自欧洲、美洲的块菌、沙漠块菌,以及块菌的生态意义和种植作了简要介绍和讨论.  相似文献   

12.
Biological invasions can have various impacts on the diversity of important microbial mutualists such as mycorrhizal fungi, but few studies have tested whether the effects of invasions on mycorrhizal diversity are consistent across spatial gradients. Furthermore, few of these studies have taken place in tropical ecosystems that experience an inordinate rate of invasions into native habitats. Here, we examined the effects of plant invasions dominated by non-native tree species on the diversity of arbuscular mycorrhizal (AM) fungi in Hawaii. To test the hypothesis that invasions result in consistent changes in AM fungal diversity across spatial gradients relative to native forest habitats, we sampled soil in paired native and invaded sites from three watersheds and used amplicon sequencing to characterize AM fungal communities. Whether our analyses considered phylogenetic relatedness or not, we found that invasions consistently increased the richness of AM fungi. However, AM fungal species composition was not related to invasion status of the vegetation nor local environment, but stratified by watershed. Our results suggest that while invasions can lead to an overall increase in the diversity of microbial mutualists, the effects of plant host identity or geographic structuring potentially outweigh those of invasive species in determining the community membership of AM fungi. Thus, host specificity and spatial factors such as dispersal need to be taken into consideration when examining the effects of biological invasions on symbiotic microbes.  相似文献   

13.
The main objectives of this study were (1) to describe the diversity of mycorrhizal fungal communities associated with Uapaca bojeri, an endemic Euphorbiaceae of Madagascar, and (2) to determine the potential benefits of inoculation with mycorrhizal fungi [ectomycorrhizal and/or arbuscular mycorrhizal (AM) fungi] on the growth of this tree species and on the functional diversity of soil microflora. Ninety-four sporophores were collected from three survey sites. They were identified as belonging to the ectomycorrhizal genera Afroboletus, Amanita, Boletus, Cantharellus, Lactarius, Leccinum, Rubinoboletus, Scleroderma, Tricholoma, and Xerocomus. Russula was the most frequent ectomycorrhizal genus recorded under U. bojeri. AM structures (vesicles and hyphae) were detected from the roots in all surveyed sites. In addition, this study showed that this tree species is highly dependent on both types of mycorrhiza, and controlled ectomycorrhization of this Uapaca species strongly influences soil microbial catabolic diversity. These results showed that the complex symbiotic status of U. bojeri could be managed to optimize its development in degraded areas. The use of selected mycorrhizal fungi such the Scleroderma Sc1 isolate in nursery conditions could be of great interest as (1) this fungal strain is very competitive against native symbiotic microflora, and (2) the fungal inoculation improves the catabolic potentialities of the soil microflora.  相似文献   

14.
The world heritage of Huangshan is located in the east-central China. In order to obtain a better overview of biodiversity in Huangshan, we investigated the diversity of arbuscular mycorrhizal fungi in the soil of Huangshan. Forty-two rhizosphere soil samples were collected and 989 arbuscular mycorrhizal fungal spore samples were obtained using the wet-sieving method. Twenty-five species of arbuscular mycorrhizal fungi were identified from the collections. The species were of the genera Acaulospora (6 species), Entrophospora (1 species), Glomus (16 species) and Scutellospora (2 species). Acaulospora and Glomus were dominant at the study site. The arbuscular mycorrhizal fungi spore density ranged from 45 to 3,250 per 100 g soil (average 839), and the species richness of arbuscular mycorrhizal fungi ranged from 1 to 9 (average 4.2) per soil sample. Shannon–Wiener index and Simpson’s index were calculated to evaluate the arbuscular mycorrhizal fungal diversity. The diversity of arbuscular mycorrhizal fungal community in the subtropical forest of Huangshan may be the result of mutual selection between arbuscular mycorrhizal fungi and the ecological environment.  相似文献   

15.
Soil fungi of areas in the North-Eastern region of Saudi Arabia where truffles are native were surveyed. Forty-three species of fungi belonging to twenty genera were isolated. Most were recovered from soils underneath or around truffle ascocarps: thirty species from soil under the surface of Tirmania nivea ascocarps, twenty-four from Terfezia boudieri soil and twenty species each from Tirmania pinoyi and Terfezia claveryi soils. Rhizosphere soil of Helianthemum lippi, on the other hand, yielded twenty-four fungal species while only fourteen fungal species were found in soil without vegetation. The total counts of fungi/g soil were highest in soils from the under surface of truffles, followed by rhizosphere soil, with the lowest in soils without vegetation.  相似文献   

16.
Given the important role that soil microbes play in structuring plant communities and mediating ecosystem functions, there is growing interest in harnessing microbial communities to restore degraded ecosystems. Dune restorations, in particular, may benefit from native soil amendments because microbial diversity and abundance are very low in unvegetated areas. In an outdoor mesocosm experiment simulating Texas Gulf Coast dune restorations, we tested how native soil microbial amendments and restored diversity of foundational grasses influenced three key restoration responses: plant performance, plant diversity (including the colonization of native forbs), and soil stability. We found that native microbial amendments increased plant diversity and have the potential to increase soil stability, but this came at the cost of decreased plant biomass. Our results suggest that soil enemies in the native microbial amendments increased plant diversity by decreasing the performance of the dominant grass species and that arbuscular mycorrhizal fungi in the native microbial amendments increased the density of fungal hyphae in the soil, which can increase soil stability. Depending on the goals of the restoration, native soil microbial amendments may be a simple and inexpensive method to provide restoration benefits.  相似文献   

17.
Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal–tree–soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.  相似文献   

18.
Fahey C  York RA  Pawlowska TE 《Mycologia》2012,104(5):988-997
Interactions with soil microbiota determine the success of restoring plants to their native habitats. The goal of our study was to understand the effects of restoration practices on interactions of giant sequoia Sequoiadendron giganteum with arbuscular mycorrhizal (AM) fungi (Glomeromycota). Natural regeneration of Sequoiadendron is threatened by the absence of severe fires that create forest canopy gaps. Generating artificial canopy gaps offers an alternative tool for giant sequoia restoration. We investigated the effect of regeneration practices, including (i) sapling location within gaps, (ii) gap size and (iii) soil substrate, on AM fungal colonization of giant sequoia sapling roots in a native giant sequoia grove of the Sierra Nevada, California. We found that the extent of AM fungal root colonization was positively correlated with sapling height and light availability, which were related to the location of the sapling within the gap and the gap size. While colonization frequency by arbuscules in saplings on ash substrate was higher relative to saplings in mineral soil, the total AM fungal root colonization was similar between the substrates. A negative correlation between root colonization by Glomeromycota and non-AM fungal species indicated antagonistic interactions between different classes of root-associated fungi. Using DNA genotyping, we identified six AM fungal taxa representing genera Glomus and Ambispora present in Sequoiadendron roots. Overall, we found that AM fungal colonization of giant sequoia roots was associated with availability of plant-assimilated carbon to the fungus rather than with the AM fungal supply of mineral nutrients to the roots. We conclude that restoration practices affecting light availability and carbon assimilation alter feedbacks between sapling growth and activity of AM fungi in the roots.  相似文献   

19.
Most restoration projects involving invasive plant eradication tend to focus on plant removal with little consideration given to how these invasives change soil microbial communities. However, soil microorganisms can determine invasibility of habitats and, in turn, be altered by invasives once established, potentially inhibiting native plant establishment. We studied soil microbial communities in coastal dunes with varying invasion intensity and different restoration approaches (herbicide, mechanical excavation) at Point Reyes National Seashore. Overall, we found evidence of a strong link between bacterial and fungal soil communities and the presence of invasives and restoration approach. Heavily invaded sites were characterized by a lower abundance of putatively identified nitrifiers, fermentative bacteria, fungal parasites, and fungal dung saprotrophs and a higher abundance of cellulolytic bacteria and a class of arbuscular mycorrhizal fungi (Archaeosporomycetes). Changes in soil microbiota did not fully dissipate following removal of invasives using herbicide, with exception of reductions in cellulolytic bacteria and Archaeosporomycetes abundance. Mechanical restoration effectively removed both invasives and soil legacy effects by inverting or “flipping” rhizome‐contaminated surface soils with soils from below and may have inadvertently induced other adverse effects on soils that impeded reestablishment of native dune plants. Land managers should consider additional measures to counteract lingering legacy effects and/or focus restoration efforts in areas where legacy effects are less pronounced.  相似文献   

20.
Terfezia claveryi is a hypogeous mycorrhizal fungus belonging to the so-called "desert truffles," with a good record as an edible fungus and of considerable economic importance. T. claveryi improves the tolerance to water stress of the host plant Helianthemum almeriense, for which, in field conditions, symbiosis with T. claveryi is valuable for its survival. We have characterized cDNAs from T. claveryi and identified a sequence related to the aquaporin gene family. The full-length sequence was obtained by rapid amplification of cDNA ends and was named TcAQP1. This aquaporin gene encoded a functional water-channel protein, as demonstrated by heterologous expression assays in Saccharomyces cerevisiae. The mycorrhizal fungal aquaporin increased both water and CO(2) conductivity in the heterologous expression system. The expression patterns of the TcAQP1 gene in mycelium, under different water potentials, and in mycorrhizal plants are discussed. The high levels of water conductivity of TcAQP1 could be related to the adaptation of this mycorrhizal fungus to semiarid areas. The CO(2) permeability of TcAQP1 could be involved in the regulation of T. claveryi growth during presymbiotic phases, making it a good candidate to be considered a novel molecular signaling channel in mycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号