首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In prior work we detected no significant inbreeding depression for pollen and ovule production in the highly selfing Mimulus micranthus, but both characters showed high inbreeding depression in the mixed-mating M. guttatus. The goal of this study was to determine if the genetic load for these traits in M. guttatus could be purged in a program of enforced selfing. These characters should have been under much stronger selection in our artificial breeding program than previously reported characters such as biomass and total flower production because, for example, plants unable to produce viable pollen could not contribute to future generations. Purging of genetic load was investigated at the level of both the population and the individual maternal line within two populations of M. guttatus. Mean ovule number, pollen number, and pollen viability declined significantly as plants became more inbred. The mean performance of outcross progeny generated from crosses between pairs of maternal inbred lines always exceeded that of self progeny and was fairly constant for each trait through all five generations. The consistent performance of outcross progeny and the universally negative relationships between performance and degree of inbreeding are interpreted as evidence for the weakness of selection relative to the quick fixation of deleterious alleles due to drift during the inbreeding process. The selective removal (purging) of deleterious alleles from our population would have been revealed by an increase in performance of outcross progeny or an attenuation of the effects of increasing homozygosity. The relationships between the mean of each of these traits and the expected inbreeding coefficient were linear, but one population displayed a significant negative curvilinear relationship between the log of male fertility (a function of pollen number and viability) and the inbreeding coefficient. The generally linear form of the responses to inbreeding were taken as evidence consistent with an additive model of gene action, but the negative curvilinear relationship between male fertility and the inbreeding coefficient suggested reinforcing epistasis. Within both populations there was significant genetic variation among maternal lineages for the response to inbreeding in all traits. Although all inbred lineages declined at least somewhat in performance, several maternal lines maintained levels of performance just below outcross means even after four or five generations of selfing. We suggest that selection among maternal lines will have a greater effect than selecting within lines in lowering the genetic load of populations.  相似文献   

2.
We examined the effect of self- and cross-pollination on germination success, flowering probability, pollen and ovule production, survivorship, and adult aboveground biomass in two species of Mimulus with contrasting mating systems: the highly seifing M. micranthus and an outcrossing population of M. guttatus. Cross-pollinations were performed both within and between populations in order to examine the scale at which the genetic load is distributed. We found significant inbreeding depression in M. guttatus in four of the six traits, with the highest inbreeding depression observed in biomass (68% and 69% based on within- and between-population crosses, respectively) and lowest in ovule production (21% based on between-population crosses only). M. micranthus displayed significant inbreeding depression in only two of the six traits examined. Again, we observed the highest inbreeding depression in biomass (47–60% based on within- and between-population crosses, respectively), but both traits showing significant differences between self and outcross progeny expressed lower inbreeding depression than in M. guttatus. We detected no significant inbreeding depression for either pollen or ovule production in M. micranthus. An estimate of total inbreeding depression based on the multiplicative effects of all traits was also lower in M. micanthus than∗∗∗ in M. guttatus. Our results are consistent with the expected purging of genetic load in populations with high selfing rates. The absence of inbreeding depression in M. micranthus pollen and ovule production, two traits with strong links to fitness in a selfing annual, further suggests the important role of directional selection in determining the population's genetic load. Comparison of cross-pollinations made within and between populations revealed little evidence of divergence of genetic load among the M. micranthus and M. guttatus populations examined.  相似文献   

3.
In mixed-mating plant populations, one can estimate the relative fitness of selfed progeny w by measuring the inbreeding coefficient F and selfing rate s of adults of one generation, together with F of adults in the following generation (after selection). In the first application of this multigenerational method, we estimated F and s for adults over three consecutive generations in adjacent populations of two annual Mimulus taxa: the outbreeding M. guttatus and the inbreeding M. platycalyx. This gave estimates of w for the last two generations. Although average multilocus selfing rates were high in both taxa (0.63 in M. guttatus; 0.84 in M. platycalyx), the relative fitness of selfed progeny averaged only 0.19 in M. guttatus and 0.32 in M. platycalyx. An alternative estimator for w that incorporates biparental inbreeding gave even lower estimates of w. These values are significantly below the 0.5 threshold thought to favor selfing, and show that partially selfing populations can harbor substantial genetic load. In accordance with the purging hypothesis, the more highly selfing M. platycalyx showed marginally lower inbreeding depression than M. guttatus in both years (P = 0.08). Inbreeding depression and selfing rates also varied among years in concert among taxa. Several sources of bias are discussed, but computer simulations indicate it is unlikely that w is biased downwards by linkage of marker loci to load loci.  相似文献   

4.
Self-fertilization and admixture of genotypes from different populations can have major fitness consequences in native species. However, few studies have addressed their potential roles in invasive species. Here, we used plants of Mimulus guttatus from seven native North American, three invasive Scottish and four invasive New Zealand populations to address this. We created seeds from self-fertilization, within-population outcrossing, between-population outcrossing within the same range, and outcrossing between the native and invasive ranges. A greenhouse experiment showed that native and invasive plants of M. guttatus suffered to similar degrees from inbreeding depression, in terms of asexual reproduction and biomass production. After outcrossing with plants from other populations, M. guttatus benefited from heterosis, in terms of asexual and sexual reproduction, and biomass production, particularly when plants from native and invasive populations were crossed. This suggests that, when novel genotypes of M. guttatus from the native North American range will be introduced to the invasive ranges, subsequent outcrossing with M. guttatus plants that are already there might further boost invasiveness of this species.  相似文献   

5.
The evolution of inbreeding in plants has often been attributed to selection for the ability to set seed in the absence of mates or pollinators. Mechanisms of reproductive assurance in five populations of mixed mating Mimulus guttatus, three populations of inbreeding M. platycalyx, and two populations of inbreeding M. nasutus were examined in a pollinator-free greenhouse. Reproductive assurance was manifested in all populations by autofertility, vegetative reproduction, or both. The inbreeding taxa had significantly greater levels of autofertility and less vegetative reproduction. Three modes of autofertility were identified: 1) due to corolla abscission only, occurring in three M. guttatus populations; 2) due to both corolla abscission and direct anther-stigma contact by curling of the lower stigmatic lobe into the anthers, occurring in two M. guttatus populations; and 3) direct stigma-anther contact by stigma curling alone prior to corolla abscission, found in each M. platycalyx and M. nasutus population. Stigma-anther distance and its interaction with stigma curling contributed to differences in autofertility among populations. Significant levels of intrapopulation quantitative genetic variation were found for seven of ten traits examined; average levels were similar between inbreeding and mixed mating populations. Genetic variation within populations for autofertility per se was not detected, but significant levels controlling stigma-anther distance were found in two M. guttatus populations. These results show that evolution of inbreeding by natural selection for reproductive assurance is possible in Mimulus, and illustrate the complex changes in floral dynamics and morphology it may involve.  相似文献   

6.
The deleterious effects of inbreeding have been well documented, but only recently have studies begun to explore the consequences of inbreeding for important ecological interactions. We examined the effects of inbreeding on the interaction between host and pathogen using the mixed-mating Mimulus guttatus (Scrophulariaceae) and Cucumber mosaic virus (CMV). Inbred (self) and outbred M. guttatus from two California populations (M5 and M13) were rub-inoculated with CMV and compared to sham-inoculated controls. Flower production by outbred plants in host population M5 showed little effect of the inoculation treatment, but inoculation reduced flower production of inbred plants by 12%, indicating that inbreeding reduces tolerance to CMV infection. This interaction fell short of significance, however. The effects of inbreeding and CMV inoculation on biomass in M5 varied significantly across the 15 families used in this experiment, indicating genetic variation in the effect of inbreeding on resistance or tolerance to CMV. CMV infection reduced biomass in host population M13, but there were no significant interactions between virus treatment and level of inbreeding for either flower production or biomass. Enzyme linked immunosorbent assay (ELISA) was used to detect CMV in host tissues. In both populations, mean ELISA absorbance values of inoculated plants were nearly identical for self and outcross hosts, indicating equal susceptibility to CMV. In outbred plants of population M5, flower production did not change with increasing ELISA absorbance, but in inbred plants it declined, indicating reduced tolerance to CMV infection. The results from this study suggest that pathogens may become increasingly detrimental as host populations become more inbred.  相似文献   

7.
The importance of genetic drift in shaping patterns of adaptive genetic variation in nature is poorly known. Genetic drift should drive partially recessive deleterious mutations to high frequency, and inter‐population crosses may therefore exhibit heterosis (increased fitness relative to intra‐population crosses). Low genetic diversity and greater genetic distance between populations should increase the magnitude of heterosis. Moreover, drift and selection should remove strongly deleterious recessive alleles from individual populations, resulting in reduced inbreeding depression. To estimate heterosis, we crossed 90 independent line pairs of Arabidopsis thaliana from 15 pairs of natural populations sampled across Fennoscandia and crossed an additional 41 line pairs from a subset of four of these populations to estimate inbreeding depression. We measured lifetime fitness of crosses relative to parents in a large outdoor common garden (8,448 plants in total) in central Sweden. To examine the effects of genetic diversity and genetic distance on heterosis, we genotyped parental lines for 869 SNPs. Overall, genetic variation within populations was low (median expected heterozygosity = 0.02), and genetic differentiation was high (median FST = 0.82). Crosses between 10 of 15 population pairs exhibited significant heterosis, with magnitudes of heterosis as high as 117%. We found no significant inbreeding depression, suggesting that the observed heterosis is due to fixation of mildly deleterious alleles within populations. Widespread and substantial heterosis indicates an important role for drift in shaping genetic variation, but there was no significant relationship between fitness of crosses relative to parents and genetic diversity or genetic distance between populations.  相似文献   

8.
Aim To explore the potential of genetic processes and mating systems to influence successful plant invasions, we compared genetic diversity of the highly invasive tropical treelet, Miconia calvescens, in nine invasive populations and three native range populations. Specifically, we tested how genetic diversity is partitioned in native and invaded regions, which have different invasion histories (multiple vs. single introductions). Lastly, we infer how levels of inbreeding in different regions impact invasion success. Location Invaded ranges in the Pacific (Hawaii, Tahiti, New Caledonia) and Australia and native range in Costa Rica. Methods Genetic diversity was inferred by analysing variation at nine microsatellite loci in 273 individuals from 13 populations of M. calvescens. Genetic structure was assessed using amova , isolation by distance (IBD) within regions, a Bayesian clustering approach, and principal coordinates analysis. Results Microsatellite analysis revealed that invaded regions exhibit low levels of allelic richness and genetic diversity with few private alleles. To the contrary, in the native range, we observed high levels of allelic richness, high heterozygosity and 78% of all private alleles. Surprisingly, despite evident genetic bottlenecks in all invasive regions, similarly high levels of inbreeding were detected in both invasive and native ranges (FIS: 0.345 and 0.399, respectively). Bayesian clustering analysis showed a lack of geographical structure in the Pacific and evidence of differing invasion histories between the Pacific and Australia. While Pacific populations are derived from a single introduction to the region, multiple introductions have taken place in Australia from different source regions. Main conclusions Multiple introductions have not resulted in increased genetic diversity for M. calvescens invasions. Moreover, similar inbreeding levels between native and invaded ranges suggests that there is no correlation between levels of inbreeding and levels of standing genetic diversity for M. calvescens. Overall, our results show that neither inbreeding nor low genetic diversity is an impediment to invasion success.  相似文献   

9.
If, because of genetic erosion, the level of homozygosity in small populations is high, additional selfing will result in small reductions of fitness. In addition, in small populations with a long inbreeding history selection may have purged the population of its genetic load. Therefore, a positive relationship between population size (or level of genetic variation) and level of additional inbreeding depression, here referred to as inbreeding load, may be expected. In a previous study on the rare and threatened perennial Salvia pratensis, a positive correlation between population size and level of allozyme variation has been demonstrated. In the present study, the inbreeding load in six populations of varying size and allozyme variation was investigated. In the greenhouse, significant inbreeding load in mean seed weight, proportion of germination, plant size, regenerative capacity, and survival was demonstrated. In a field experiment with the two largest and the two smallest populations, survival of selfed progeny was 16% to 63% lower than survival of outcrossed progeny. In addition, survival of outcrossed progeny was, with the exception of the largest population, lower (16% to 37%) than of hybrid progeny, resulting from crosses between populations. Effects on plant size were qualitatively similar to the effects on survival, but these effects were variable in time because of differential survival of larger individuals. In all populations the total inbreeding load, that is, the effects on size and survival multiplicated, increased in time. It was demonstrated that inbreeding load in different characters may be independent. At no time and for no character was inbreeding load or the heterosis effect correlated to the mean number of alleles per locus, indicating that allozyme variation is not representative for variation at fitness loci in these populations. Combined with results of previous investigations, these results suggest that the small populations are in an early phase of the genetic erosion process. In this phase, allozyme variation, which is supposed to be (nearly) neutral, has been affected by genetic erosion but the selectively nonneutral variation is only slightly affected. These results stress the need for detailed information about the inbreeding history of small populations. The relative performance of selfed progeny was lowest in all populations, in the greenhouse as well as in the field, and inbreeding depression could still influence the extinction probabilities of the small populations.  相似文献   

10.
Tychoparthenogenesis, a form of asexual reproduction in which a small proportion of unfertilized eggs can hatch spontaneously, could be an intermediate evolutionary link in the transition from sexual to parthenogenetic reproduction. The lower fitness of tychoparthenogenetic offspring could be due to either developmental constraints or to inbreeding depression in more homozygous individuals. We tested the hypothesis that in populations where inbreeding depression has been purged, tychoparthenogenesis may be less costly. To assess this hypothesis, we compared the impact of inbreeding and parthenogenetic treatments on eight life‐history traits (five measuring inbreeding depression and three measuring inbreeding avoidance) in four laboratory populations of the desert locust, Schistocerca gregaria, with contrasted demographic histories. Overall, we found no clear relationship between the population history (illustrated by the levels of genetic diversity or inbreeding) and inbreeding depression, or between inbreeding depression and parthenogenetic capacity. First, there was a general lack of inbreeding depression in every population, except in two populations for two traits. This pattern could not be explained by the purging of inbreeding load in the studied populations. Second, we observed large differences between populations in their capacity to reproduce through tychoparthenogenesis. Only the oldest laboratory population successfully produced parthenogenetic offspring. However, the level of inbreeding depression did not explain the differences in parthenogenetic success between all studied populations. Differences in development constraints may arise driven by random and selective processes between populations.  相似文献   

11.
We established replicated experimental populations of the annual plant Clarkia pulchella to evaluate the existence of a causal relationship between loss of genetic variation and population survival probability. Two treatments differing in the relatedness of the founders, and thus in the genetic effective population size (Ne), were maintained as isolated populations in a natural environment. After three generations, the low Ne treatment had significantly lower germination and survival rates than did the high Ne treatment. These lower germination and survival rates led to decreased mean fitness in the low Ne populations: estimated mean fitness in the low Ne populations was only 21% of the estimated mean fitness in the high Ne populations. This inbreeding depression led to a reduction in population survival: at the conclusion of the experiment, 75% of the high Ne populations were still extant, whereas only 31% of the low Ne populations had survived. Decreased genetic effective population size, which leads to both inbreeding and the loss of alleles by genetic drift, increased the probability of population extinction over that expected from demographic and environmental stochasticity alone. This demonstrates that the genetic effective population size can strongly affect the probability of population persistence.  相似文献   

12.
Pinus radiata has a history of population bottlenecks and is currently restricted to five relatively small populations, three in mainland California, and two on islands off the coast of Baja California. Using highly polymorphic microsatellite markers and a newly developed statistical approach, we were able to estimate individual inbreeding coefficients and can thus analyse the mating system with high resolution. We find a bimodal distribution of inbreeding coefficients: most individuals result from selfing whereas few (in the mainland populations) to a modest number (in the island populations) are likely selfed. In most other pine species and presumably in the ancestral P. radiata population, occurrence of mature selfed individuals would be impossible because of the high genetic load. We therefore conclude that inbreeding depression has been purged in P. radiata and that the mating system has changed as a consequence.  相似文献   

13.
  • 1 The European bison Bison bonasus went through a severe bottleneck and became extinct in the wild 90 years ago. The lowland subspecies B. b. bonasus is the only one of three original subspecies that exists today. The entire species derives from only 12 founders, including a bull of the Caucasian subspecies B. b. caucasicus. Due to its presence among founders, there are two geographically separated genetic lines of European bison: the pure lowland (Bia?owie?a) line and the hybrid lowland‐Caucasian line.
  • 2 The lowland line of the European bison originates from only seven founders with an extremely varying genetic contribution. Approximately 80% of the genes in contemporary populations come from just two founders.
  • 3 A variety of genetic markers (mtDNA, microsatellites, single nucleotide polymorphism microchips) were applied to studies of the level of depletion of genetic variability in European bison.
  • 4 The lowland line of the European bison, the most extensively studied, shows very low levels of genetic variation, and has just half the microsatellite heterozygosity of the closely related American bison Bison bison. The effective population size (Ne) for the highly genetically homogenous lowland line in the Polish part of the Bia?owie?a Forest is estimated to be 23.5, far less than the census population size of 450.
  • 5 The average inbreeding level in lowland bison is almost 50%, although no signs of inbreeding depression have been observed. In contrast, inbreeding effects have been noticed in the lowland‐Caucasian line, which has a much lower average inbreeding level (28%). In spite of the apparently high fitness of the lowland bison, the lack of genetic variation and high level of inbreeding may present substantial threats in the future, especially in the context of potential epizootics.
  相似文献   

14.
In the present study, we report an investigation on molecular variation in the endangered univoltine butterfly Euphydryas aurinia (Rottemburg, 1775), a species heavily affected by habitat degradation and fragmentation in Denmark. Levels of genetic variation in extant populations were estimated using six variable number tandem repeat loci and were found to be low compared to other butterfly species with low migration rates. An analysis of genetic structure, based on both allele frequencies and genotype distributions, divided the entire sample into four distinct clusters. This was partially concordant with the a priori subdivision based on collection areas. An overall FST value of 0.16 (pairwise values ranging from 0.087–0.276) indicated restrictions of gene flow. Especially two populations had higher FST values than the others, suggesting their isolation, and showed signs of bottlenecks/founder events. One population deviated significantly from Hardy–Weinberg equilibrium, suggesting a possible Wahlund effect or the presence of null alleles. The results suggest habitat fragmentation, resulting in genetic drift and possibly inbreeding. Future management is therefore recommended to increase gene flow between the remaining populations while habitats are restored in order to increase carrying capacity. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 677–687.  相似文献   

15.
The genetically effective population size (Ne) is of key importance for quantifying rates of inbreeding and genetic drift and is often used in conservation management to set targets for genetic viability. The concept was developed for single, isolated populations and the mathematical means for analysing the expected Ne in complex, subdivided populations have previously not been available. We recently developed such analytical theory and central parts of that work have now been incorporated into a freely available software tool presented here. gesp (Genetic Effective population size, inbreeding and divergence in Substructured Populations) is R‐based and designed to model short‐ and long‐term patterns of genetic differentiation and effective population size of subdivided populations. The algorithms performed by gesp allow exact computation of global and local inbreeding and eigenvalue effective population size, predictions of genetic divergence among populations (GST) as well as departures from random mating (FIS, FIT) while varying (i) subpopulation census and effective size, separately or including trend of the global population size, (ii) rate and direction of migration between all pairs of subpopulations, (iii) degree of relatedness and divergence among subpopulations, (iv) ploidy (haploid or diploid) and (v) degree of selfing. Here, we describe gesp and exemplify its use in conservation genetics modelling.  相似文献   

16.
It has been hypothesized that natural selection reduces the “genetic load” of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.  相似文献   

17.
The effects of inbreeding on fitness and themaintenance of genetic load in metapopulationsof the endangered Glanville fritillarybutterfly (Melitaea cinxia) were examinedin four laboratory experiments. In FinlandM. cinxia occurs as a large metapopulationconsisting of small local populations with fastturnover, whereas in southern France thespecies has a more continuous populationstructure. In the experiments, we compared theperformance of crosses between full sibs,crosses between members of different familieswithin populations, and crosses betweenindividuals from different populations. Theseexperiments were replicated using insects fromtwo different regions, Finland and southernFrance, between which the frequency of naturalinbreeding should differ substantially becauseof differing population structure. In Finnishbutterflies, the rate of successful mating waslower among insects derived from small thanfrom large natural populations, probablyreflecting the effect of past inbreedinghistory. Mating between full sibs lowered egghatching rate in all experiments. Thisreduction of egg hatching rate was more severeamong French butterflies with a more continuouspopulation structure than among Finnishbutterflies with small naturally fragmentedpopulations and with a history of repeatedrounds of inbreeding in the past. This resultsuggests that recurrent inbreeding has led topartial purging of deleterious recessives fromthe Finnish metapopulation. Nonetheless,substantial genetic load still remains in thismetapopulation, and we discuss possible reasonswhy this should be the case.  相似文献   

18.
Chromosomal rearrangement polymorphisms are common and increasingly found to be associated with adaptive ecological divergence and speciation. Rearrangements, such as inversions, reduce recombination in heterozygous individuals and thus can protect favourable allelic combinations at linked loci, facilitating their spread in the presence of gene flow. Recently, we identified a chromosomal inversion polymorphism that contributes to ecological adaptation and reproductive isolation between annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus. Here we evaluate the population genetic structure of this inverted region in comparison with the collinear regions of the genome across the M. guttatus species complex. We tested whether annual and perennial M. guttatus exhibit different patterns of divergence for loci in the inverted and noninverted regions of the genome. We then evaluated whether there are contrasting climate associations with these genomic regions through redundancy analysis. We found that the inversion exhibits broadly different patterns of divergence among annual and perennial M. guttatus and is associated with environmental variation across population accessions. This study is the first widespread population genetic survey of the diversity of the M. guttatus species complex. Our findings contribute to a greater understanding of morphological, ecological, and genetic evolutionary divergence across this highly diverse group of closely related ecotypes and species. Finally, understanding species relationships among M. guttatus sp. has hitherto been stymied by accumulated evidence of substantial gene flow among populations as well as designated species. Nevertheless, our results shed light on these relationships and provide insight into adaptation in life history traits within the complex.  相似文献   

19.
The degree to which individuals inbreed is a fundamental aspect of population biology shaped by both passive and active processes. Yet, the relative influences of random and non-random mating on the overall magnitude of inbreeding are not well characterized for many taxa. We quantified variation in inbreeding among qualitatively accessible and isolated populations of a sessile marine invertebrate (the colonial ascidian Lissoclinum verrilli) in which hermaphroditic colonies cast sperm into the water column for subsequent uptake and internal fertilization. We compared estimates of inbreeding to simulations predicting random mating within sites to evaluate if levels of inbreeding were (1) less than expected because of active attempts to limit inbreeding, (2) as predicted by genetic subdivision and passive inbreeding tolerance, or (3) greater than simulations due to active attempts to promote inbreeding via self-fertilization or a preference for related mates. We found evidence of restricted gene flow and significant differences in the genetic diversity of L. verrilli colonies among sites, indicating that on average colonies were weakly related in accessible locations, but their levels of relatedness matched that of first cousins or half-siblings on isolated substrates. Irrespective of population size, progeny arrays revealed variation in the magnitude of inbreeding across sites that tracked with the mean relatedness of conspecifics. Biparental reproduction was confirmed in most offspring (86%) and estimates of total inbreeding largely overlapped with simulations of random mating, suggesting that interpopulation variation in mother–offspring resemblance was primarily due to genetic subdivision and passive tolerance of related mates. Our results highlight the influence of demographic isolation on the genetic composition of populations, and support theory predicting that tolerance of biparental inbreeding, even when mates are closely related, may be favoured under a broad set of ecological and evolutionary conditions.  相似文献   

20.
Estimation of effective population size (Ne) from genetic marker data is a major focus for biodiversity conservation because it is essential to know at what rates inbreeding is increasing and additive genetic variation is lost. But are these the rates assessed when applying commonly used Ne estimation techniques? Here we use recently developed analytical tools and demonstrate that in the case of substructured populations the answer is no. This is because the following: Genetic change can be quantified in several ways reflecting different types of Ne such as inbreeding (NeI), variance (NeV), additive genetic variance (NeAV), linkage disequilibrium equilibrium (NeLD), eigenvalue (NeE) and coalescence (NeCo) effective size. They are all the same for an isolated population of constant size, but the realized values of these effective sizes can differ dramatically in populations under migration. Commonly applied Ne‐estimators target NeV or NeLD of individual subpopulations. While such estimates are safe proxies for the rates of inbreeding and loss of additive genetic variation under isolation, we show that they are poor indicators of these rates in populations affected by migration. In fact, both the local and global inbreeding (NeI) and additive genetic variance (NeAV) effective sizes are consistently underestimated in a subdivided population. This is serious because these are the effective sizes that are relevant to the widely accepted 50/500 rule for short and long term genetic conservation.  The bias can be infinitely large and is due to inappropriate parameters being estimated when applying theory for isolated populations to subdivided ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号