首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The significance of co‐evolution over ecological timescales is well established, yet it remains unclear to what extent co‐evolutionary processes contribute to driving large‐scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long‐term co‐evolutionary hypotheses relate to proposed interactions between herbivorous non‐avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co‐occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright‐coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur–cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified – GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co‐evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co‐evolutionary interactions between cycads and herbivorous dinosaurs – diffuse co‐evolutionary scenarios that are proposed to operate over geological timescales are plausible, but such hypotheses need to be firmly grounded on direct evidence of interaction and may be difficult to support given the patchiness of the fossil record.  相似文献   

2.
The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125-80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR.  相似文献   

3.
Did dinosaurs invent flowers? Dinosaur—angiosperm coevolution revisited   总被引:1,自引:0,他引:1  
Angiosperms first appeared in northern Gondwana during the Early Cretaceous, approximately 135 million years ago. Several authors have hypothesised that the origin of angiosperms, and the tempo and pattern of their subsequent radiation, was mediated by changes in the browsing behaviour of large herbivorous dinosaurs (sauropods and ornithischians). Moreover, the taxonomic and ecological radiation of angiosperms has been associated with the evolution of complex jaw mechanisms among ornithischian dinosaurs. Here, we review critically the evidence for dinosaur-angiosperm interactions during the Cretaceous Period, providing explicit spatiotemporal comparisons between evolutionary and palaeoecological events in both the dinosaur and angiosperm fossil records and an assessment of the direct and indirect evidence for dinosaur diets. We conclude that there are no strong spatiotemporal correlations in support of the hypothesis that dinosaurs were causative agents in the origin of angiosperms; however, dinosaur-angiosperm interactions in the Late Cretaceous may have resulted in some coevolutionary interactions, although direct evidence of such interactions is scanty at present. It is likely that other animal groups (insects, arboreal mammals) had a greater impact on angiosperm diversity during the Cretaceous than herbivorous dinosaurs. Elevated levels of atmospheric CO2 might have played a critical role in the initial stages of the angiosperm radiation.  相似文献   

4.
Aim Modern biodiversity peaks in the tropics and declines poleward, a pattern that is potentially driven by climate. Although this latitudinal biodiversity gradient (LBG) also characterizes the marine invertebrate fossil record, distributions of ancient terrestrial faunas are poorly understood. This study utilizes data on the dinosaur fossil record to examine spatial patterns in terrestrial biodiversity throughout the Mesozoic. Location We compiled data on fossil occurrences across the globe. Methods We compiled a comprehensive dataset of Mesozoic dinosaur genera (738), including birds. Following the utilization of sampling standardization techniques to mediate for the uneven sampling of the fossil record, we constructed latitudinal patterns of biodiversity from this dataset. Results The dominant group of Mesozoic terrestrial vertebrates did not conform to the modern LBG. Instead, dinosaur diversity was highest at temperate palaeolatitudes throughout the 160 million year span of dinosaurian evolutionary history. Latitudinal diversity correlates strongly with the distribution of land area. Late Cretaceous sauropods and ornithischians exhibit disparate LBGs. Main conclusions The continuity of the palaeotemperate peak in dinosaur diversity indicates a diminished role for climate on the Mesozoic LBG; instead, dinosaur diversity may have been driven by the amount of land area among latitudinal belts. There is no evidence that the tropics acted as a cradle for dinosaur diversity. Geographical partitioning among major clades of herbivorous dinosaurs in the Late Cretaceous may result from the advanced stages of continental fragmentation and/or differing responses to increasing latitudinal climatic zonation. Our results suggest that the modern‐day LBG on land was only established 30 million years ago, following a significant post‐Eocene recalibration, potentially related to increased seasonality.  相似文献   

5.
Non‐avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long‐term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction's tempo and causes. Little support exists for a global, long‐term decline across non‐avian dinosaur diversity prior to their extinction at the end of the Cretaceous. However, restructuring of latest Cretaceous dinosaur faunas in North America led to reduced diversity of large‐bodied herbivores, perhaps making communities more susceptible to cascading extinctions. The abruptness of the dinosaur extinction suggests a key role for the bolide impact, although the coarseness of the fossil record makes testing the effects of Deccan volcanism difficult.  相似文献   

6.
Multiple associations of fossil snails with dinosaur coprolites demonstrate that snails and dinosaurs not only shared ancient habitats but were trophically linked via dinosaur dung. Over 130 fossil snails representing at least seven different taxa have been found on or within herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine Formation of Montana. The terrestrial snail Megomphix is the most common taxon, but three other terrestrial taxa (Prograngerella, Hendersonia and Polygyrella) and three aquatic snails (Lioplacodes, ?Viviparus and a physid) also occur in coprolites. At least 46% of the shells in the faeces are whole or nearly so, indicating that most (if not all) of the snails were not ingested by dinosaurs, but were post‐depositional visitors to the dung pats. The sizeable, moist and microbially enriched dinosaur faeces would have provided both food and roosting sites for the ancient snails, and the large number of snail–coprolite associations reflect recurring, opportunistic exploitation of dung. The terrestrial taxa in the coprolites suggest that this Late Cretaceous locality included sufficiently moist detrital or vegetative cover for snails when dinosaur dung was not present. The aquatic snails probably entered the faeces during flood events. Dinosaur dung would have provided an abundant but patchy influx of resources that was probably seasonally available in the ancient environment.  相似文献   

7.
The extremes of dinosaur body size have long fascinated scientists. The smallest (<1 m length) known dinosaurs are carnivorous saurischian theropods, and similarly diminutive herbivorous or omnivorous ornithischians (the other major group of dinosaurs) are unknown. We report a new ornithischian dinosaur, Fruitadens haagarorum, from the Late Jurassic of western North America that rivals the smallest theropods in size. The largest specimens of Fruitadens represent young adults in their fifth year of development and are estimated at just 65–75 cm in total body length and 0.5–0.75 kg body mass. They are thus the smallest known ornithischians. Fruitadens is a late-surviving member of the basal dinosaur clade Heterodontosauridae, and is the first member of this clade to be described from North America. The craniodental anatomy and diminutive body size of Fruitadens suggest that this taxon was an ecological generalist with an omnivorous diet, thus providing new insights into morphological and palaeoecological diversity within Dinosauria. Late-surviving (Late Jurassic and Early Cretaceous) heterodontosaurids are smaller and less ecologically specialized than Early (Late Triassic and Early Jurassic) heterodontosaurids, and this ecological generalization may account in part for the remarkable 100-million-year-long longevity of the clade.  相似文献   

8.
The Stegosauria represents an iconic group of ornithischian dinosaurs, with a fossil record spanning the Middle Jurassic to the Late Cretaceous. In this contribution I present the first detailed analysis of the relationship between disparity and diversity through the evolutionary history of the group. The analysis has been performed on a recently published cladistic dataset, allowing the separate study of the signals deriving from discrete characters and from continuous morphometric characters. Whereas the disparity as sum of variance is decoupled with respect to diversity, the sum of ranges provides a signal fairly consistent with the trend in the number of taxa. Both sub-data sets show that evolution of stegosaurs can be considered essentially as symmetrical, i.e. the maximum exploration of the possible morphospace takes place about half way through the history of the group, with subsequent significant decline until extinction in the Upper Cretaceous. An interesting result is a decoupling of the tempo and mode of evolution of the cranium and postcranium in stegosaurs. Specifically, the evolutionary radiation with maximum saturation of morphospace is anticipated in the cranial skeleton, with maximum peak in the Oxfordian; in contrast, the postcranium explores the largest number of morphotypes subsequently during the Kimmeridgian.  相似文献   

9.
Many hypotheses have been advanced to explain the K/Pg extinctions, yet none closely examines the likely interactions between dinosaurs and contemporary taxa within their communities. The diversity of predators of dinosaur nests and hatchlings increased toward the end of the Cretaceous. In addition to large snakes having been found fossilized in the act of foraging in dinosaur nests, mammals and birds had also evolved new forms potentially capable of exploiting this resource. The constraints on mammal size and niche diversity lessened prior to the K/Pg boundary. Using comparisons of predator/prey size ratios between extant species and known fossils, we demonstrate that mammalian and avian clades had members large enough to prey on dinosaur eggs and hatchlings. We argue that the reproductive strategy of obligatory nest defense was likely practiced by most non-avian dinosaur species. This strategy was highly susceptible to the increasing numbers of mammalian, avian, and reptilian predators, which rendered this strategy obsolete. Continued selection against large oviparous species in the Cenozoic has limited this life-history strategy to habitats that provide concealment – primarily grasslands, a habitat that did not exist until the Miocene. We urge the evaluation of multiple, perhaps synergistic, hypotheses when considering extinction events of this magnitude.  相似文献   

10.
Attila ?si 《Geobios》2004,37(6):749
The first dinosaur remains are described from the Upper Cretaceous (Santonian) Csehbánya Formation, Iharkút, Bakony Mts, Hungary. Eight teeth of herbivorous dinosaurs (Rhabdodontidae indet. Nodosauridae indet.) and four teeth belonging to Theropoda indet. are presented. There are also hundreds of fish, frog, turtle and crocodile bones and teeth embedded in fluvial sand of an alluvial plain. Palaeobiogeographic connections towards Provence, the eastern Alps, and southern Carpathians indicate that the Adriatic microplate bearing the fossiliferous succession was an island temporarily connected to the European continent during Late Cretaceous time.  相似文献   

11.
The evolutionary radiation of dinosaurs in the Late Triassic and Early Jurassic was a pivotal event in the Earth's history but is poorly understood, as previous studies have focused on vague driving mechanisms and have not untangled different macroevolutionary components (origination, diversity, abundance and disparity). We calculate the morphological disparity (morphospace occupation) of dinosaurs throughout the Late Triassic and Early Jurassic and present new measures of taxonomic diversity. Crurotarsan archosaurs, the primary dinosaur 'competitors', were significantly more disparate than dinosaurs throughout the Triassic, but underwent a devastating extinction at the Triassic-Jurassic boundary. However, dinosaur disparity showed only a slight non-significant increase after this event, arguing against the hypothesis of ecological release-driven morphospace expansion in the Early Jurassic. Instead, the main jump in dinosaur disparity occurred between the Carnian and Norian stages of the Triassic. Conversely, dinosaur diversity shows a steady increase over this time, and measures of diversification and faunal abundance indicate that the Early Jurassic was a key episode in dinosaur evolution. Thus, different aspects of the dinosaur radiation (diversity, disparity and abundance) were decoupled, and the overall macroevolutionary pattern of the first 50Myr of dinosaur evolution is more complex than often considered.  相似文献   

12.
Although the physiology of dinosaurs is still a matter of controversy, there is no doubt that some of them were able to live in environments that were too cold for ectothermic reptiles, as shown by discoveries of Jurassic and Cretaceous polar vertebrate assemblages which contain dinosaurs but lack turtles and crocodiles. This adaptation of dinosaurs to cool climates invalidates hypotheses according to which dinosaur extinction at the end of the Cretaceous was a result of long-term climatic cooling. The pattern seen at the K/T boundary, with the disappearance of dinosaurs and the survival of ectothermic reptiles, is completely different from that seen in Arctic regions during the Late Cretaceous, where ectotherms disappeared, while dinosaurs subsisted, during cooler periods. The idea of an intense and enduring cold spell at the K/T boundary, caused by the Chicxulub impact, is extremely unlikely in view of the pattern of vertebrate extinction (survival of endotherms, extinction of dinosaurs). Models of environmental events following the impact must take this palaeontological constraint into consideration.  相似文献   

13.
Palaeobiodiversity analysis underpins macroevolutionary investigations, allowing identification of mass extinctions and adaptive radiations. However, recent large-scale studies on marine invertebrates indicate that geological factors play a central role in moulding the shape of diversity curves and imply that many features of such curves represent sampling artefacts, rather than genuine evolutionary events. In order to test whether similar biases affect diversity estimates for terrestrial taxa, we compiled genus-richness estimates for three Mesozoic dinosaur clades (Ornithischia, Sauropodomorpha and Theropoda). Linear models of expected genus richness were constructed for each clade, using the number of dinosaur-bearing formations available through time as a proxy for the amount of fossiliferous rock outcrop. Modelled diversity estimates were then compared with observed patterns. Strong statistically robust correlations demonstrate that almost all aspects of ornithischian and theropod diversity curves can be explained by geological megabiases, whereas the sauropodomorph record diverges from modelled predictions and may be a stronger contender for identifying evolutionary signals. In contrast to other recent studies, we identify a marked decline in dinosaur genus richness during the closing stages of the Cretaceous Period, indicating that the clade decreased in diversity for several million years prior to the final extinction of non-avian dinosaurs at the Cretaceous–Palaeocene boundary.  相似文献   

14.
Disarticulated dinosaur bones have been discovered in a fossiliferous lens in the Labirinta Cave, southwest of the town of Cherven Bryag, in NW Bulgaria. This cave is formed within marine limestones belonging to the Kajlâka Formation of Latest Cretaceous age. Associated fossils and Sr isotopy suggest that the fossiliferous sediments belong to the uppermost part of the Upper Maastrichtian. The dinosaur bones discovered in this lens include the distal portion of a left femur, a right tibia, the proximal part of a right fibula, a left metatarsal II, the second or third phalanx of a left pedal digit IV, the proximal end of a second metacarpal, and a caudal centrum. All the bones undoubtedly belong to ornithopod dinosaurs and more accurately to representatives of the hadrosauroid clade. All belong to small-sized individuals, although it cannot be assessed whether they belong to juveniles or small-sized adults, pending histological analyses. Hadrosauroid remains have already been discovered in Late Maastrichtian marine sediments from western, central and eastern Europe, reflecting the abundance of these dinosaurs in correlative continental deposits. Indeed, hadrosauroids were apparently the dominating herbivorous dinosaurs in Eurasia by Late Maastrichtian time.  相似文献   

15.
安徽省黄山地区恐龙(足迹)脚印化石的初步研究   总被引:8,自引:0,他引:8  
简要报道了安徽省黄山地区所发现的恐龙足迹化石。从脚印的形态和足迹上看,至少有三种不同的恐龙(蜥脚类、兽脚类、鸟脚类)共同生存过,其中多数恐龙为两足行走性的。记述了两个典型的小型兽脚类和小型鸟脚类恐龙所留下的脚印化石。黄山地区恐龙足迹、骨骼化石及其蛋化石的发现,对于研究晚白垩世恐龙生活习性以及古气候环境均有着一定的意义。  相似文献   

16.
PHYLOGENETIC RELATIONSHIPS IN SEED PLANTS   总被引:1,自引:0,他引:1  
Abstract— The phylogenetic relationships of nineteen extant and fossil seed plants are considered. Analysis of 31 characters produced ten topologically similar and equally parsimonious cladograms. A strict consensus tree derived from these cladograms places Lyginopteris as the sister taxon to the other seed plants included. Within this clade all the taxa considered, except medullosans and cycads, form a single monophyletic group defined by the presence of flattened seeds and saccate pollen ("platy-sperms"). Relationships between medullosans, cycads, and "platysperms" were not resolved, but within the "platysperm" clade conifers and cordaites ( Cordaixylon, Mesoxylon ) + Ginkgo form a monophyletic group ("coniferophytes"). The "higher platysperms" (glossopterids, Caytonia , corystosperms, Bennettitales, Pentoxylon , Gnetales, and angiosperms) are also monophyletic, but their relationship to "coniferophytes," peltasperms, and Callistophyton is unresolved. Pentoxylon is placed as sister taxon to the Bennettitales, and together they form the sister group to a clade in which Gnetales and angiosperm are sister taxa. The Bennettitales + Pentoxylon + Gnetales + angiosperms ("anthophytes") form a monophyletic sister group to the corystosperms. This analysis is compared with current classifications of seed plants. It does not support a close relationship between Bennettitales and cycads, it provides no evidence for seed plant polyphyly, and it strongly suggests that the current concept of seed ferns has little value in a phylogenetic context.  相似文献   

17.
Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian – Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately co-eval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost during the Maastrichtian in New Mexico. The same pattern seen in northern faunas, which may provide evidence for an abrupt dinosaur extinction.  相似文献   

18.

The very different frequency of dinosaurs during the Mesozoic can be allied to the correlation between global sea level cyclicity and fossilization. This is based upon the sedimentary situation in the inner shelf, the area of predominant fossil record of dinosaurs, and sea level fluctuations. A rich fossil record is found in times of high sea level, and vice versa. Due to natural laws acting on sea level stands, the fossil record of dinosaurs and other terrestrial tetrapods is incomplete. This is causally explainable in the sequence stratigraphy. Among causes of global sea level fluctuations, the change from warm to cold times has been accorded greatest probability even in the Mesozoic. Consequently, the problem of dinosaur evolution and distribution should not be confused with the pattern of their fossil record. The latter, however, is so far nearly always used for all interpretations. The context presented here results in basic modifications.

During the phases of reduced to missing fossil record (low sea level, cold times), dinosaurs existed at least in circumequatorial regions in high diversity. Highly diverse faunas recorded exceptionally in the Upper Jurassic, Middle and Late Cretaceous, were each time the result of a long previous evolution and not the result of short term radiations at these times. Phases of sea level highstand and warm times caused an increased fossil record and poleward distribution. Cretaceous dinosaurs in paleolatitudes of 70° to 80° N and S are no proof for endothermy, but are only the effect of favorable climatic conditions at limited times. Any endothermy of the dinosaurs is not coincident with the supposedly uniformly warm equable climate of the Mesozoic, but with the opposite. Cold times did not hamper the existence of dinosaurs, but led in extreme cases (Aalenian and Valanginian) to the global lack of their fossil record. The situation at the Cretaceous‐Tertiary boundary is also explainable in this context. According to the sea level cyclicity, no extreme sea level fall and no globablly cold time were present in the critical time segment. The regression in the late Maastrichtian is found to belong to a sequence of third‐order cycles beginning in the Campanian. Every one of the cycle boundaries with regression and transgression produced apparent extinction effects which in reality are only gaps in the fossil record. After the late Maastrichtian regression the dinosaurs persisted with six lineages. The so far youngest dinosaur fauna in the Puercan (basal Paleocene) lies in a phase of sea level highstand of minor amplitude and duration with comparatively minor chances for a fossil record. The occurrences in the Puercan are governed by natural law, and, thus, dinosaurs are untied from the short term problems of the Cretaceous‐Tertiary boundary. Why dinosaurs are then missing at the next highstand, remains an open question. Anyhow, mechanisms which control fossil record, diversification and distribution, including global cold periods, do not belong to the direct causes of extinction, because identical occurrences happened many times during the Mesozoic without inducing extinction.  相似文献   

19.
Sauropod dinosaurs, the dominant herbivores throughout the Jurassic, challenge general rules of large vertebrate herbivory. With body weights surpassing those of any other megaherbivore, they relied almost exclusively on pre-angiosperm plants such as gymnosperms, ferns and fern allies as food sources, plant groups that are generally believed to be of very low nutritional quality. However, the nutritive value of these taxa is virtually unknown, despite their importance in the reconstruction of the ecology of Mesozoic herbivores. Using a feed evaluation test for extant herbivores, we show that the energy content of horsetails and of certain conifers and ferns is at a level comparable to extant browse. Based on our experimental results, plants such as Equisetum, Araucaria, Ginkgo and Angiopteris would have formed a major part of sauropod diets, while cycads, tree ferns and podocarp conifers would have been poor sources of energy. Energy-rich but slow-fermenting Araucaria, which was globally distributed in the Jurassic, was probably targeted by giant, high-browsing sauropods with their presumably very long ingesta retention times. Our data make possible a more realistic calculation of the daily food intake of an individual sauropod and improve our understanding of how large herbivorous dinosaurs could have flourished in pre-angiosperm ecosystems.  相似文献   

20.
Explanations of the distributions of terrestrial vertebrates during the Mesozoic are currently vigorously contested and debated in palaeobiogeography. Recent studies focusing on dinosaurs yield conflicting hypotheses. Dispersal, coupled with regional extinction or vicariance driven by continental break-up, have been cited as the main causal factors behind dinosaur distributions in the Mesozoic. To expand the scope of the debate and test for vicariance within another terrestrial group, I herein apply a cladistic biogeographical method to a large sample of Cretaceous crocodyliform taxa. A time-slicing methodology is employed and a refinement made to account for the divergence times of the analysed clades. The results provide statistically significant evidence that Gondwana fragmentation affected crocodyliform diversification during the Mid-Late Cretaceous. Detection of a vicariant pattern within crocodyliforms is important as it helps corroborate vicariance hypotheses in other fossil and extant groups as well as furthers the move towards more taxonomically diverse approaches to palaeobiogeographical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号