首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Competition between spermatozoa of rival males to gain fertilizations has led to a wide array of modifications in sperm structure and function. Sperm cells of most muroid rodents have hook‐shaped extensions in the apical–ventral tip of the head, but the function of this structure is largely unknown. These ‘hooks’ may facilitate aggregation of spermatozoa in so‐called ‘trains’, as an adaptation to sperm competition, because sperm in trains may swim faster than free‐swimming cells. However, there is controversy regarding the role of the hook in train formation, and in relation to whether it is selected by sperm competition. We examined spermatozoa from muroid rodents with varying levels of sperm competition to assess whether (i) sperm aggregates are common in these taxa, (ii) presence of a hook relates to the formation of sperm aggregations, and (iii) formation of sperm aggregations is explained by sperm competition. Our analyses in 25 muroid species revealed that > 92% of spermatozoa swim individually in all species, with the exception of the wood mouse, Apodemus sylvaticus, which has ~50% spermatozoa swimming freely. Species with hooked spermatozoa had higher sperm competition levels and longer sperm than species whose sperm lack a hook. Neither the presence of hook nor sperm competition levels were related to the percentage of sperm in aggregations. Thus, (i) sperm aggregates in muroid rodents are an exceptional trait found only in a few species, (ii) evolution of the sperm hook is associated to sperm competition levels, but (iii) the hook is unlikely to be related to the formation of sperm aggregates. The evolutionary significance of the sperm head hook thus remains elusive, and future studies should examine potential roles of this pervasive structure in sperm's hydrodynamic efficiency and sperm–female tract interactions.  相似文献   

2.
Sperm show a remarkable degree of variation in size, shape and complexity. Murine rodents exhibit a sperm head morphology that differs greatly from the ovoid shape that is characteristic of most mammals. These rodents have sperm that bear one or more apical hooks, the function of which is currently surrounded by much controversy. It has been suggested that the hook serves to facilitate the formation of sperm groups, which in some species exhibit relatively faster velocities than single cells and thus, may provide an advantage when ejaculates are competing for fertilisations. In support of this hypothesis, a comparative study reported a positive association between the strength of sperm competition (estimated from testes size) and the curvature of the sperm hook amongst 37 murine species. Here, we assessed whether sperm competition influences sperm hookedness at the intra-specific level. Following 16 generations of selection, we used geometric morphometry (GM) to describe sperm head morphology in selection lines of house mice evolving with (polygamous) and without (monogamous) sperm competition. Although the GM analysis returned two relative warps that described variation in the curvature of the sperm hook, we found no evidence of divergence between the selection lines. Thus, we can conclude that sperm competition does not influence the degree of sperm hookedness in house mice.  相似文献   

3.
Sperm conjugation occurs when two or more sperm physically unite for motility or transport through the female reproductive tract. In many muroid rodent species, sperm conjugates have been shown to form by a single, conspicuous apical hook located on the sperm head. These sperm “trains” have been reported to be highly variable in size and, despite all the heads pointing in roughly the same direction, exhibit a relatively disordered arrangement. In some species, sperm “trains” have been shown to enhance sperm swimming speed, and thus have been suggested to be advantageous in sperm competition. Here, we assessed the behavior of sperm in the sandy inland mouse (Pseudomys hermannsburgensis), a muroid rodent that bears sperm with three apical hooks. First, we accrued genetic evidence of multiple paternity within “wild” litters to unequivocally show that sperm competition does occur in this species. Following this we utilized both in vitro and in vivo methodologies to determine whether sandy inland mouse sperm conjugate to form motile trains. Our observations of in vitro preparations of active sperm revealed that sandy inland mouse sperm exhibit rapid, progressive motility as individual cells only. Similarly, histological sections of the reproductive tracts of mated females revealed no in vivo evidence of sperm conjugate formation. We conclude that the unique, three‐hooked morphology of the sandy inland mouse sperm does not facilitate the formation of motile conjugates, and discuss our findings in relation to the different hypotheses for the evolution of the muroid rodent hook/s.  相似文献   

4.
Sperm apical hooks in murine rodents play an important role in sperm competition. Apical hooks are more curved and longer in species with relatively larger testes, that is in species with a higher risk of sperm competition. The sperm can form aggregations, ‘trains’, that can move faster than individual sperm, thus reaching the egg earlier as was observed in Apodemus sylvaticus. The apical hook plays an important role for train formation. This study focuses on the changes in the curvature of sperm apical hooks during the final stages of spermiogenesis and stages before fertilization (sperm-life span). Apical hook curvatures of field mice (A. agrarius and A. sylvaticus) vary significantly between dormant and active sperm. In contrast, there are no significant differences among the stages in the eastern house mouse. Since there are high ranges of angle values in all stages, the mean angles of apical hook curvature are not appropriate for evaluating risk of sperm competiton. The ranges of angle values point to a level of flexibility of the apical hooks. The lengths of sperm hooks in individual species do not change during particular stages. The length and flexibility of the sperm apical hooks are important for the formation of sperm aggregations, thus these sperm characters indicate the risk of sperm competition and the sperm strategies in murine rodents.  相似文献   

5.
In various groups of mammals, the intensity of intermale sperm competition relates to relative testes mass (RTM) with some evidence suggesting that this may also be the case for some aspects of sperm form. In murid rodents, a large RTM generally correlates with a streamlined sperm head, long apical hook and long tail with most data coming from species in the subfamily Murinae. In this study, RTM and sperm form are compared across 15 species of gerbils, seven from the Tribe Taterillini and eight from the Tribe Gerbillini. Marked interspecific differences in RTM and sperm morphology were observed. However, the Gerbilliscus species with the largest RTM do not have a sperm head with an apical hook nor a longer sperm tail than other species with smaller RTM whereas, by contrast, in the Tribe Gerbillini, species where the sperm head lacks a hook have a relatively small testes mass. We thus suggest that in gerbils, unlike in murine rodents, high levels of postcopulatory sexual selection have not invariably resulted in the evolution of a spermatozoon with a long apical hook and long sperm tail. The possible reasons for this are briefly discussed.  相似文献   

6.
Postcopulatory sexual selection, either in the form of sperm competition or cryptic female choice, is an important selective force that is thought to have generated the enormous variation in sperm morphology observed interspecifically. However, the evolutionary significance of intraspecific variation in sperm morphology, and the role that postcopulatory sexual selection plays in influencing this variation, remains poorly investigated in invertebrates. Here, we tested the hypothesis that postcopulatory sexual selection reduces variation in sperm morphology, both between and within males, in 27 species of eusocial ants and bees. These eusocial species offer an unusual opportunity to assess how selection acts on variance in sperm morphology, as haploid males produce clonal, haploid sperm that does not experience haploid-diploid conflict. We provide solid evidence that males of polyandrous ant and bee species indeed produce less-variable sperm, indicating that sperm competition selected for sperm of superior quality. Our results offer a mechanistic explanation for the evolution of high-quality sperm and provide comprehensive evidence that sperm morphology of social insects is influenced by sexual selection.  相似文献   

7.
In the rodent superfamily Muroidea, a model for the evolution of sperm form has been proposed in which it is suggested that a hook-shaped sperm head and long tail evolved from a more simple, nonhooked head and short tail in several different subfamilies. To test this model the shape of the sperm head, with particular emphasis on its apical region, and length of sperm tail were matched to a recent phylogeny based on the nucleotide sequence of several protein-coding nuclear genes from 3 families and 10 subfamilies of muroid rodents. Data from the two other myomorph superfamilies, the Dipodoidea and kangaroo rats in the Geomyoidea, were used for an outgroup comparison. In most species in all 10 muroid subfamilies, apart from in the Murinae, the sperm head has a long rostral hook largely composed of acrosomal material, although its length and cross-sectional shape vary across the various subfamilies. Nevertheless, in a few species of various lineages a very different sperm morphology occurs in which an apical hook is lacking. In the outgroups the three species of dipodid rodents have a sperm head that lacks a hook, whereas in the heteromyids an acrosome-containing apical hook is present. It is concluded that, as the hook-shaped sperm head and long sperm tail occur across the muroid subfamilies, as well as in the heteromyid rodents, it is likely to be the ancestral condition within each of the subfamilies with the various forms of nonhooked sperm heads, that are sometimes associated with short tails, being highly derived states. These findings thus argue against a repeated evolution in various muroid lineages of a complex, hook-shaped sperm head and long sperm tail from a more simple, nonhooked sperm head and short tail. An alternative proposal for the evolution of sperm form within the Muroidea is presented in the light of these data.  相似文献   

8.
The structural organization of the head of the spermatozoon from the African murid rodent Dasymys incomtus was investigated by light and transmission electron microscopy and after incubation in various chemical agents. The results show that it is falciform in shape with a bifurcated rostral extension lying just caudal to the apical hook. The nucleus protrudes into the base of this extension but it is largely composed of a massive elaboration of the sperm head cytoskeleton which is very resistant to dispersion by chemical agents. This elaborate accessory structure of the sperm head shows similar morphology to the ventral processes on the sperm head of Australasian hydromyine rodents. The possible functional and evolutionary significance of these findings are discussed.  相似文献   

9.
The morphology of the spermatozoon of representative species of the subfamily Nesomyinae (Muroidea: Nesomyidae), a monophyletic group of rodents endemic to Madagascar, was examined by light and electron microscopy to determine the sperm head shape and tail length across the species. Marked interspecific differences were found to occur in both the form of the sperm head and length of the tail. The species that possess a sperm head with an apical hook, which largely contains acrosomal material, generally displayed longer sperm tails, and a species with a spatulate sperm head had the shortest tail. The association between sperm head shape and tail length mirrors that previously found in Eurasian and Australasian murine rodents. Thus, the repeated association between sperm head shape and tail length across these groups of muroid rodents clearly indicates a functional relationship between these two features. A comparison of sperm morphology of the nesomyines to that of related muroid rodents on the mainland of Africa suggests that the possession of an apical hook is the ancestral condition. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.

Background

Post-copulatory sexual selection has been shown to shape morphology of male gametes. Both directional and stabilizing selection on sperm phenotype have been documented in vertebrates in response to sexual promiscuity.

Methodology

Here we investigated the degree of variance in apical hook length and tail length in six taxa of murine rodents.

Conclusions

Tail sperm length and apical hook length were positively associated with relative testis mass, our proxy for levels of sperm competition, thus indicating directional post-copulatory selection on sperm phenotypes. Moreover, our study shows that increased levels of sperm competition lead to the reduction of variance in the hook length, indicating stabilizing selection. Hence, the higher risk of sperm competition affects increasing hook length together with decreasing variance in the hook length. Species-specific post-copulatory sexual selection likely optimizes sperm morphology.  相似文献   

11.
Most species in the three highly speciose families of the mouse‐related clade of rodents, the Muridae, Cricetidae, and Nesomyidae (superfamily Muroidea), have a highly complex sperm head in which there is an apical hook but there are few data available for the other related families of these rodents. In the current study, using light and electron microscopies, we investigated the structure of the spermatozoon in representative species of four other families within the mouse‐related clade, the Dipodidae, Spalacidae, Pedetidae, and Heteromyidae, that diverged at or near the base of the muroid lineage. Our results indicate that a diverse array of sperm head shapes and tail lengths occurs but none of the species in the families Spalacidae, Dipodidae, or Pedetidae has a sperm head with an apical hook. By contrast, a rostrally extending apical hook is present in spermatozoa of members of the Family Heteromyidae which also invariably have comparatively long sperm tails. These findings suggest that the hook‐shaped sperm head in the murid, cricetid, and nesomyid rodents evolved after divergence of this lineage from its common ancestor with the other families of the mouse‐related clade, and that separate, and independent, convergent evolution of a similar sperm head form, and long sperm tail, occurred in the Heteromyidae. J. Morphol. 275:540–547, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Spermatozoa are among the most diversified cells in the animal kingdom, but the underlying evolutionary forces affecting intraspecific variation in sperm morphology are poorly understood. It has been hypothesized that sperm competition is a potent selection pressure on sperm variation within species. Here, we examine intraspecific variation in total sperm length of 22 wild passerine bird species (21 genera, 11 families) in relation to the risk of sperm competition, as expressed by the frequency of extrapair paternity and relative testis size. We demonstrate, by using phylogenetic comparative methods, that between-male variation in sperm length within species is closely and negatively linked to the risk of sperm competition. This relationship was even stronger when only considering species in which data on sperm length and extrapair paternity originated from the same populations. Intramale variation in sperm length within species was also negatively, although nonsignificantly, related to sperm competition risk. Our findings suggest that postcopulatory sexual selection is a powerful evolutionary force reducing the intraspecific phenotypic variation in sperm-size traits, potentially driving the diversification of sperm morphology across populations and species.  相似文献   

13.
The murine rodents are the most speciose subfamily of mammals. Here the morphology of the spermatozoon, as determined by scanning and transmission electron microscopy of representative species from four Eurasian clades, is described. Much interspecific variability in all components of the spermatozoon was found to occur, although most species have a bilaterally flattened sperm head with a single apical hook of variable length and orientation. Ultrastructural observations indicate that this apical hook invariably contains a nuclear projection as well as a large extension of the subacrosomal cytoskeleton, as a perforatorium rostrally, and a complex asymmetrical acrosomal extension. These spermatozoa also have relatively long tails that are attached to the lower concave surface of the sperm head. Uniquely, in species in the Apodemus clade, the apical hook is orientated caudally. In a few species a highly derived sperm head morphotype that does not contain an apical hook is present. These sperm heads vary in morphology from being globular in two species of Bandicota, to bilaterally flattened and paddle-shaped in Tokudaia and Micromys. In spermatozoa of the latter two genera the subacrosomal cytoskeleton, which is less extensive than in species with a hooked sperm head, forms an apical extension, but that is not the case in Bandicota. In all species where the sperm head lacks an apical hook the acrosome is more symmetrical. The sperm tail is much shorter in these species, with attachment to the head occurring on the ventral surface in Tokudaia and basal in Micromys and the two species of Bandicota. As the sperm head morphotype with a complex apical hook is present in all the major clades of murine rodents, it is likely to be a plesiomorphic character within each of these clades, with the nonhooked sperm heads, which vary greatly in structure between species of the different lineages, probably being independently derived. The ultrastructural organization of the sperm head of Bandicota, but not those of Micromys or Tokudaia, suggest divergence in some of the morphological events associated with sperm-egg interaction at the time of fertilization.  相似文献   

14.
The ultrastructure of the sperm head of the plains mouse, Pseudomys australis, and the effects of chemical treatments on the sperm head components has been investigated to determine the nature of the material in the hooks on the apical margine of the sperm head. Ultrastructural studies indicated that the dorsal hook contained nuclear, subacrosomal, and acrosomal material, whereas the two ventral hooks were largely composed of an extention of the subacrosomal material with two thin acrosomal projections at their base. Acrosomal material was dispersed by mild detergent treatment, where as the bulk of the material in the ventral hooks were generally found to be similar to the subacrosomal material in the dorsal hook in their resistance to the various chemical treatments. Treatment of sperm with NaOH or guanidine-hydrochloride and DTT revealed two layers of material in the ventral hooks.  相似文献   

15.
Sperm competition is an important component of post‐copulatory sexual selection that has shaped the evolution of sperm morphology. Previous studies have reported that sperm competition has a concurrently directional and stabilizing effect on sperm size. For example, bird species that show higher levels of extrapair paternity and larger testes (proxies for the intensity of sperm competition) have longer sperm and lower coefficients of variation in sperm length, both within and between males. For this reason, these sperm traits have been proposed as indexes to estimate the level of sperm competition in species for which other measures are not available. The relationship between sperm competition and sperm morphology has been explored mostly for bird species that breed in temperate zones, with the main focus on passerine birds. We measured sperm morphology in 62 parrot species that breed mainly in the tropics and related variation in sperm length to life‐history traits potentially indicative of the level of sperm competition. We showed that sperm length negatively correlated with the within‐male coefficient of variation in sperm length and positively with testes mass. We also showed that sperm is longer in sexually dichromatic and in gregarious species. Our results support the general validity of the hypothesis that sperm competition drives variation in sperm morphology. Our analyses suggest that post‐copulatory sexual selection is also important in tropical species, with more intense sperm competition among sexually dichromatic species and among species that breed at higher densities.  相似文献   

16.
The diversity of the structural organization of the spermatozoa of African murid rodents is described at the light and transmission electron microscopical level of resolution. In most species the sperm head is falciform in shape but it varies somewhat in overall breadth, width, and length. A typical perforatorium is present and the acrosome splits into a large head cap over the convex surface and a smaller ventral segment similar to the sperm head of most Asian and Australasian murids. In a few species, however, the morphology is very different. In Acomys and Uranomys spermatozoa, the apical hook is more bilaterally flattened, has a large apical acrosomal region, and no separate ventral segment. Two species of Aethomys have, in addition to an apical hook, a 4μ long extension of the cytoskeletal material that projects from the concave surface of the sperm head, whereas in Dasymys two large ventral processes extend from the upper concave region which contain nuclear material basally and a huge extension of cytoskeleton apically. In Aethomys chrysophilus type B, the sperm nucleus is unique in form and often has a central region in which threads of chromatin can be seen; it is capped by a massive acrosome whose apical segment is complex and convoluted in structure. Stochomys longicaudatus appears to have a conical sperm head, and in all three Lophuromys species the sperm head is spatulate in shape with the flat, plate-like nucleus capped by a thin acrosome. The evolutionary trends in changes of sperm head shape and design of these rodents are discussed. It is suggested that some of the differences in morphology may relate to the variation in structural organization of the coats around the egg through which the spermatozoon has to pass in order for fertilization to occur.  相似文献   

17.
Breed, W.G. and Leigh, C.M. 2010. The spermatozoon of the Old Endemic Australo‐Papuan and Philippine rodents – its morphological diversity and evolution.—Acta Zoologica (Stockholm) 91 : 279–294 The spermatozoon of most murine rodents contains a head in which there is a characteristic apical hook, whereas most old endemic Australian murines, which are part of a broader group of species that also occur in New Guinea and the Philippines, have a far more complex sperm form with two additional ventral processes. Here we ask the question: what is the sperm morphology of the New Guinea and Philippines species and what are the trends in evolutionary changes of sperm form within this group? The results show that, within New Guinea, most species have a highly complex sperm morphology like the Australian rodents, but within the Pogonomys Division some species have a simpler sperm morphology with no ventral processes. Amongst the Philippines species, many have a sperm head with a single apical hook, but in three Apomys species the sperm head contains two additional small ventral processes, with two others having cockle‐shaped sperm heads. When these findings are plotted on a molecular phylogeny, the results suggest that independent and convergent evolution of highly complex sperm heads containing two ventral processes has evolved in several separate lineages. These accessory structures may support the sperm head apical hook during egg coat penetration.  相似文献   

18.
Sperm morphological traits are highly variable among species and are commonly thought to evolve by post‐copulatory sexual selection. However, little is known about the evolutionary dynamics of sperm morphology, and whether rates of evolutionary change are variable over time and among taxonomic groups. Here, we examine sperm morphology from 21 species of Old World leaf warblers (Phylloscopidae), a group of generally dull, sexually monochromatic birds, which are known to have high levels of extra‐pair paternity. We found that sperm length differs markedly across species, spanning about 40% of the range observed across a larger selection of passerine birds. Furthermore, we found strong support for an ‘early‐burst’ model of trait evolution, implying that the majority of divergence in sperm length has occurred early in the evolutionary history of this clade with subsequent evolutionary stasis. This large early divergence matches the early divergence reported in ecological traits (i.e. body size and feeding behaviour). Our findings demonstrate that rates of evolution in sperm morphology can change over time in passerine taxa, and that evolutionary stasis in sperm traits can occur even in species exhibiting characteristics consistent with moderate‐to‐high levels of sperm competition. It remains a major challenge to identify the selection mechanisms and possible constraints responsible for these variable rates of sperm evolution.  相似文献   

19.
Post‐copulatory sexual selection, and sperm competition in particular, is a powerful selective force shaping the evolution of sperm morphology. Although mounting evidence suggests that post‐copulatory sexual selection influences the evolution of sperm morphology among species, recent evidence also suggests that sperm competition influences variation in sperm morphology at the intraspecific level. However, contradictory empirical results and limited taxonomic scope have led to difficulty in assessing the generality of sperm morphological responses to variation in the strength of sperm competition. Here, we use phylogenetically controlled analyses to explore the effects of sperm competition on sperm morphology and variance in sharks, a basal vertebrate group characterized by wide variation in rates of multiple mating by females, and consequently sperm competition risk. Our analyses reveal that shark species experiencing greater levels of sperm competition produce sperm with longer flagella and that sperm flagellum length is less variable in species under higher sperm competition risk. In contrast, neither the length of the sperm head and midpiece nor variation in sperm head and midpiece length was associated with sperm competition risk. Our findings demonstrate that selection influences both the inter‐ and intraspecific variation in sperm morphology and suggest that the flagellum is an important target of sexual selection in sharks. These findings provide important insight into patterns of selection on the ejaculate in a basal vertebrate lineage.  相似文献   

20.
Sperm morphology varies enormously across the animal kingdom. Whilst knowledge of the factors that drive the evolution of interspecific variation in sperm morphology is accumulating, we currently have little understanding of factors that may constrain evolutionary change in sperm traits. We investigated whether susceptibility to sperm abnormalities could represent such a constraint in songbirds, a group characterized by a distinctive helical sperm head shape. Specifically, using 36 songbird species and data from light and scanning electron microscopy, we examined among‐species correlations between the occurrence of sperm head abnormalities and sperm morphology, as well as the correlation between sperm head abnormalities and two indicators of sperm competition. We found that species with more helically shaped sperm heads (i.e., a wider helical membrane and more pronounced cell waveform) had a higher percentage of abnormal sperm heads than species with less helical sperm (i.e., relatively straight sperm) and that sperm head traits were better predictors of head abnormalities than total sperm length. In contrast, there was no correlation between sperm abnormalities and the level of sperm competition. Given that songbird species with more pronounced helical sperm have higher average sperm swimming speed, our results suggest an evolutionary trade‐off between sperm performance and the structural integrity of the sperm head. As such, susceptibility to morphological abnormalities may constrain the evolution of helical sperm morphology in songbirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号