首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies underline the importance of ecological barriers and differential selection in driving sympatric speciation. Host‐associated differentiation (HAD) has been proposed as one of the mechanisms leading to sympatric speciation. However, it is still unclear how common HAD is or which are the factors that could promote it. In particular, not much is known about HAD in predators and parasitoids of herbivorous insects. One of the characteristics postulated to pre‐dispose insects to HAD is parthenogenesis as it may favour adaptive responses to particular environments, amplifying selected gene complexes. In this study, we used amplified fragment length polymorphism (AFLP) markers to determine whether HAD is present in two parthenogenetic egg parasitoids attacking the same herbivore species – the pine processionary moth, Thaumetopoea pityocampa (Denis & Schiffermüller) (Lepidoptera: Notodontidae) – on two host Pinus species. A total of 100 loci for 59 individuals sampled in four populations of Baryscapus servadeii (Domenichini) (Hymenoptera: Eulophidae), a specialist parasitoid, and 106 loci for 117 individuals sampled in six populations of Ooencyrtus pityocampae Mercet (Hymenoptera: Encyrtidae), a generalist parasitoid, were analysed. Levels of genetic differentiation were also assessed with an outlier analysis, checking for alleles associated to host plants. No evidence of HAD was detected in any of the two parasitoid species. We hypothesize that both the lack of strict parthenogenetic reproduction and the ectophagous nature of the insect host could explain the absence of HAD. The genetic variation observed in the generalist parasitoid responded to a pattern of local adaptation, whereas no relationship with either host or geography was found in the specialist parasitoid.  相似文献   

2.
There is ample evidence that host shifts in plant‐feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host‐associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide‐ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD.  相似文献   

3.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

4.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

5.
Insect herbivores may undergo genetic divergence on their host plants through host‐associated differentiation (HAD). Much of what we know about HAD involves insect species with narrow host ranges (i.e., specialists) that spend part or all their life cycle inside their hosts, and/or reproduce asexually (e.g., parthenogenetic insects), all of which are thought to facilitate HAD. However, sexually reproducing polyphagous insects can also exhibit HAD. Few sexually reproducing insects have been tested for HAD, and when they have insects from only a handful of potential host‐plant populations have been tested, making it difficult to predict how common HAD is when one considers the entire species' host range. This question is particularly relevant when considering insect pests, as host‐associated populations may differ in traits relevant to their control. Here, we tested for HAD in a cotton (Gossypium hirsutum) pest, the cotton fleahopper (CFH) (Pseudatomoscelis seriatus), a sexually reproducing, highly polyphagous hemipteran insect. A previous study detected one incidence of HAD among three of its host plants. We used Amplified fragment length polymorphism (AFLP) markers to assess HAD in CFH collected from an expanded array of 13 host‐plant species belonging to seven families. Overall, four genetically distinct populations were found. One genetically distinct genotype was exclusively associated with one of the host‐plant species while the other three were observed across more than one host‐plant species. The relatively low degree of HAD in CFH compared to the pea aphid, another hemipteran insect, stresses the likely importance of sexual recombination as a factor increasing the likelihood of HAD.  相似文献   

6.
Host‐associated differentiation (HAD) is the formation of genetically distinct host‐associated populations. One of the genotypic signatures of HAD is that populations exhibit stronger differentiation by host‐plant species than by geographic isolation. HAD, as a mechanism promoting ecological speciation, has been invoked to explain phytophagous insect diversity. Two traits proposed to promote HAD are endophagy and parthenogenesis. Using amplified fragment length polymorphisms (AFLPs), we tested for the presence of HAD in pecan leaf phylloxera, Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae), an endophagous, gall inducing, and cyclically parthenogenetic insect on sympatric pecan and water hickory at a geographic mesoscale. This species shows strong HAD. Whereas the effect of collecting site was significant, accounting for 7.3% of molecular variation, host‐plant species identity accounted for 63.5%. In addition, a choice test indicated that pecan leaf phylloxera originating from water hickory showed weak but significant preference for leaflets of the natal host, whereas pecan leaf phylloxera originating from pecan did not. This is the first such study of a species of arboreal Phylloxeridae, a poorly known insect group. This is also the first endophage and the second parthenogen shared by these two hickory species to show evidence of HAD. This hickory system could be a good parthenogen‐rich counterpoint to the goldenrod system in the study of HAD in insect communities.  相似文献   

7.
Host‐associated differentiation (HAD) is considered a step towards ecological speciation and an important mechanism promoting diversification in phytophagous insects. Although the number of documented cases of HAD is increasing, these still represent only a small fraction of species and feeding guilds among phytophagous insects, and most reports are based on a single type of evidence. Here we employ a comprehensive approach to present behavioural, morphological, ecological and genetic evidence for the occurrence of HAD in the gall midge Dasineura folliculi (Diptera: Cecidomyiidae) on two sympatric species of goldenrods (Solidago rugosa and S. gigantea). Controlled experiments revealed assortative mating and strong oviposition fidelity for the natal‐host species. Analysis of mitochondrial DNA showed an amount of genetic divergence between the two host‐associated populations compatible with cryptic species rather than host races. Lower levels of within‐host genetic divergence, gall development and natural‐enemy attack in the S. gigantea population suggest this is the derived host.  相似文献   

8.
Host‐associated differentiation (HAD) is the occurrence of genetically distinct, host‐associated lineages. Most of the cases of HAD in phytophagous insects have been documented in specialist insects inhabiting feral ecosystems or in generalist parthenogens in agroecosystems. Herein we report HAD in the cotton fleahopper, Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae), a native, generalist, non‐parthenogenetic insect feeding on native wild hosts [horsemint, Monarda punctata L. (Lamiaceae) and woolly croton, Croton capitatus Michx. (Euphorbiaceae)] and on cotton [Gossypium hirsutum L. (Malvaceae)] in the USA. Examination of genome‐wide genetic variation with AFLP markers and Bayesian analyses of P. seriatus associated with three different host plant species at five locations in Texas revealed a geographic pattern of HAD. The geographic pattern of HAD corresponded with differences in precipitation among the locations studied. In three locations, two distinct lineages of P. seriatus were found in association with horsemint and cotton/woolly croton, whereas in two other locations, populations associated with the different host plants studied were panmictic. We suggest that precipitation differences among locations translate into heterogeneity in vegetation distribution, composition, and phenology, which altogether may contribute to the observed geographic pattern of HAD.  相似文献   

9.
Host recognition and use in female parasitoids strongly relies on host fidelity, a plastic behavior which can significantly restrict the host preferences of parasitoids, thus reducing the gene flow between parasitoid populations attacking different insect hosts. However, the effect of migrant males on the genetic differentiation of populations has been frequently ignored in parasitoids, despite its known impact on gene flow between populations. Hence, we studied the extent of gene flow mediated by female and male parasitoids by assessing sibship relationships among parasitoids within and between populations, and its impact on geographic and host‐associated differentiation in the aphid parasitoid Aphidius ervi. We report evidences of a high gene flow among parasitoid populations on different aphid hosts and geographic locations. The high gene flow among parasitoid populations was found to be largely male mediated, suggested by significant differences in the distribution of full‐sib and paternal half‐sib dyads of parasitoid populations.  相似文献   

10.
Host‐associated differentiation (HAD) is the formation of genetically distinct, host‐associated populations created and maintained by ecologically mediated reproductive isolation. HAD potentially accounts for species origins in parasites, including herbivorous insects. Although case studies testing the occurrence of HAD are accumulating, it is still unclear how common HAD is and which specific ecological traits explain its occurrence. To address these issues, studies are needed that include negative results (i.e., instances in which parasite populations do not exhibit HAD) and test for HAD across communities (i.e., several parasite species on the same set of host species). In this study, HAD was tested in a community of six species of Aphidomorpha (Hemiptera) that share a host‐plant pair: pecan [Carya illinoinensis (Wangenh.) K.Koch] and water hickory [Carya aquatica (F.Michx) Nutt., both Juglandaceae] trees. All six species are parthenogenetic and three species are endophagous, traits that can exacerbate host‐specific selection. AFLP markers were employed to detect the presence of genetically distinct, host‐associated populations for each insect species. Strict HAD (i.e., the occurrence of genetically distinct pecan‐associated and water hickory‐associated genotypes) was found in Phylloxera notabilis Pergande (Phylloxeridae), Phylloxera devastatrix Pergande, and Monelliopsis pecanis Bissel (Aphididae). Monellia caryella Fitch (Aphididae) displayed a pattern of partial HAD (i.e., the occurrence of only a genetically distinct pecan‐associated genotype). No HAD was found in Melanocallis caryaefoliae Davis (Aphididae) or Phylloxera texana Stoetzel. The pattern of HAD occurrence in the pecan and water hickory Aphidomorpha community indicated that neither parthenogenesis nor endophagy sufficiently explain the occurrence of HAD in this system.  相似文献   

11.
Host‐associated differentiation (HAD) is the formation of genetically divergent host‐associated sub‐populations. Evidence of HAD has been reported for multiple insect herbivores to date, but published studies testing more than one herbivore for any given host‐plant species pair is limited to herbivores on goldenrods. This limits the number of pair‐wise comparisons that can be made about insect life‐history traits that might facilitate or inhibit host‐race development in general. Two traits previously proposed to facilitate HAD include endophagy and parthenogenesis. We tested for HAD in two herbivores, a quasi‐endophagous caterpillar and a parthenogenetic aphid, feeding on two closely related species of hickories. We found that the quasi‐endophage is panmictic, whereas the parthenogen exhibits HAD on their sympatric host plants, pecan and water hickory, at a geographic mesoscale. This is an important first step in the characterization of HAD in multiple insect herbivores using North American hickories, a host‐plant system with many shared parthenogens.  相似文献   

12.
Light brown apple moth, Epiphyas postvittana (Walker), is a newly invasive pest in California. Habrobracon gelechiae Ashmead is an indigenous North American ectoparasitoid of lepidopterans. Using E. postvittana as the host, we determined H. gelechiae host stage preference for oviposition and suitability for larval growth: the parasitoid attacked second to fifth instars, but preferred older (third to fifth) host larvae for oviposition, laying more eggs per clutch on the largest (fifth instar). Offspring survival was better on larger (third to fifth instars) hosts. Adult survival and fecundity and immature temperature development were studied at three key temperatures. At 12°C, H. gelechiae failed to oviposit. At 22 and 30°C, H. gelechiae had, respectively, egg to adult developmental times of 15.4 and 8.7 days, adult female survival of 54.8 and 27.2 days, lifetime parasitism of 39.9 and 21.8 hosts and 181 and 151 eggs per female, an intrinsic rate of increase of 0.107 and 0.165, and mean generation time 30.7 and 18.9 days. We studied intraguild interactions with the endoparasitoid Meteorus ictericus Nees, and found that H. gelechiae did not discriminate against hosts that were parasitised by M. ictericus. Neither the paralysing venom injected by H. gelechiae or the presence of the ectoparasitoid's eggs or larvae arrested M. ictericus development. We also conducted a field release of H. gelechiae on two plant species commonly infested by E. postvittana and showed that H. gelechiae was able to locate and attack moth larvae on both hosts.  相似文献   

13.
The process responsible for the formation of genetically distinct populations associated with different host species is known as host-associated differentiation (HAD). Many insect parasites of plants have been shown to exhibit HAD but there have been fewer studies of HAD in parasites of vertebrate animals. Previous to this study, HAD has been documented in at least three species of ticks. The American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae) was chosen as the focal species for this study due to its importance as the vector of tularemia and Rocky Mountain spotted fever. Previous population genetic studies of this tick found the existence of various haplotypes but the tick’s host origins were unknown. In this study, ticks were collected from 15 vertebrate host species to test for HAD using single nuclear polymorphisms (SNPs). In total, 136 individual D. variabilis ticks were sequenced using ddRADseq. Genomic evidence was found to point to D. variabilis exhibiting HAD on eight different hosts. A STRUCTURE analysis showed that the highest posterior probability was obtained with a population size of eight and these populations correlated with host species. Pairwise FST values were as high as 0.622 and indicated a range of genetic distinction between host groups. In addition, ticks collected from the vegetation appeared as one homogenous distinct genotype suggesting the existence of nidicolous (nest dwelling) and non-nidicolous genotypes. The identification of host race formation occurring in this animal parasite has implications for the understanding of D. variabilis pathogen transmission and targeted control efforts because genetically distinct populations can differ in traits relevant to these applications.  相似文献   

14.
Host‐associated differentiation (HAD) is the presence of genetically divergent, host‐associated populations. It has been suggested that microbial symbionts of insect herbivores may play a role in HAD by allowing their insect hosts to use different plant species. The objective of this study was to document if host‐associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory corresponded with differences in the composition of their associated bacteria. To test this hypothesis, we characterized the symbionts present in P. notabilis associated with these two tree species through metagenomic analyses using 454 sequencing. Differences in bacterial diversity were found between P. notabilis populations associated with pecan and water hickory. The bacteria, Pantoea agglomerans and Serratia marcescens, were absent in the P. notabilis water hickory population, whereas both species accounted for more than 69.72% of bacterial abundance in the pecan population.  相似文献   

15.
Despite an increasing acceptance in the biological community for sympatric speciation as a mode of species formation, well documented examples of sympatrically evolved ‘incipient species’ remain rare. The sympatric host races of apple maggot, Rhagoletis pomonella (Walsh), represent one of the most prominent case studies for sympatric speciation via a host shift. The European cherry fruit fly, R. cerasi (L.), shows strong ecological similarities to R. pomonella: (1) infestation of two different host plants, Lonicera xylosteum L. and Prunus avium L., and (2) divergent phenological and behavioral adaptations of flies on different hosts. The population genetic study presented here addresses whether the host associated populations of R. cerasi also represent genetically differentiated true host races. Out of a total of 29 allozyme loci examined, six were polymorphic and used to analyze six sympatric pairs of R. cerasi populations on Lonicera and Prunus from Switzerland and Germany. A direct comparison of allele frequencies between sympatric sites showed no pattern indicative of host races in R. cerasi. However, the hierarchical F‐statistic for one locus, mannose 6‐phosphate isomerase (Mpi), showed significant population differentiation that was in accordance with host race differentiation. Mpi is one of several loci that are also diagnostic for host race differentiation in R. pomonella. Results from Mpi suggest the formation of sympatric host races in R. cerasi, but additional polymorphic markers are necessary.  相似文献   

16.
The host-associated differentiation (HAD) hypothesis states that higher trophic levels in parasitic associations should exhibit similar divergence in case of host sympatric speciation. We tested HAD on populations of Aphidius ervi the main parasitoid of the pea aphid Acyrthosiphon pisum, emerging from host populations specialized on either alfalfa or red clover. Host and parasitoid populations were assessed for genetic variation and structure, while considering geography, host plant and host aphid protective symbionts Regiella insecticola and Hamiltonella defensa as potential covariables. Cluster and hierarchical analyses were used to assess the contribution of these variables to population structure, based on genotyping pea aphids and associated A. ervi with microsatellites, and host aphid facultative symbionts with 16S rDNA markers. Pea aphid genotypes were clearly distributed in two groups closely corresponding with their plant origins, confirming strong plant associated differentiation of this aphid in North America. Overall parasitism by A. ervi averaged 21.5 % across samples, and many parasitized aphids producing a wasp hosted defensive bacteria, indicating partial or ineffective protective efficacy of these symbionts in the field. The A. ervi population genetic data failed to support differentiation according to the host plant association of their pea aphid host. Potential for parasitoid specialization was also explored in experiments where wasps from alfalfa and clover aphids were reciprocally transplanted on alternate hosts, the hypothesis being that wasp behaviour and parasitic stages should be most adapted to their host of origin. Results revealed higher probability of oviposition on the alfalfa aphids, but higher adult emergence success on red clover aphids, with no interaction as expected under HAD. We conclude that our study provides no support for the HAD in this system. We discuss factors that might impair A. ervi specialization on its divergent aphid hosts on alfalfa and clover.  相似文献   

17.
Evolutionary radiations have been well documented in plants and insects, and natural selection may often underly these radiations. If radiations are adaptive, the diversity of species could be due to ecological speciation in these lineages. Agromyzid flies exhibit patterns of repeated host‐associated radiations. We investigated whether host‐associated population divergence and evidence of divergent selection exist in the leaf miner Phytomyza glabricola on its sympatric host plants, the holly species, Ilex coriacea and I. glabra. Using AFLPs and nuclear sequence data, we found substantial genetic divergence between host‐associated populations of these flies throughout their geographic range. Genome scans using the AFLP data identified 13 loci under divergent selection, consistent with processes of ecological speciation. EF‐1α data suggest that I. glabra is the original host of P. glabricola and that I. coriacea is the novel host, but the AFLP data are ambiguous with regard to directionality of the host shift.  相似文献   

18.
Genetic differentiation may exist among sympatric populations of a species due to long‐term associations with alternative hosts (i.e. host‐associated differentiation). While host‐associated differentiation has been documented in several phytophagus insects, there are far fewer cases known in animal parasites. The bed bug, Cimex lectularius, a wingless insect, represents a potential model organism for elucidating the processes involved in host‐associated differentiation in animal parasites with relatively limited mobility. In conjunction with the expansion of modern humans from Africa into Eurasia, it has been speculated that bed bugs extended their host range from bats to humans in their shared cave domiciles throughout Eurasia. C. lectularius that associate with humans have a cosmopolitan distribution, whereas those associated with bats occur across Europe, often in human‐built structures. We assessed genetic structure and gene flow within and among populations collected in association with each host using mtDNA, microsatellite loci and knock‐down resistance gene variants. Both nuclear and mitochondrial data support a lack of significant contemporary gene flow between host‐specific populations. Within locations human‐associated bed bug populations exhibit limited genetic diversity and elevated levels of inbreeding, likely due to human‐mediated movement, infrequent additional introduction events per infestation, and pest control. In contrast, populations within bat roosts exhibit higher genetic diversity and lower levels of relatedness, suggesting populations are stable with temporal fluctuations due to host dispersal and bug mortality. In concert with previously published evidence of morphological and behavioural differentiation, the genetic data presented here suggest C. lectularius is currently undergoing lineage divergence through host association.  相似文献   

19.
Host shifts followed by specialization can result in sympatric genetic differentiation, and may have fuelled the diversification of phytophagous insects. This study examines a recent colonization of a non‐native host by Prodoxus quinquepunctellus (Lepidoptera: Prodoxidae). Allozyme differentiation was detected among different host feeding populations, yet was nearly absent among similar host feeding populations in sympatry. Geographical patterns of allozyme variation showed a much higher level of population structure among populations feeding on the derived host. Conversely, mtDNA haplotype frequencies were nearly homogeneous in the derived populations compared to the ancestral populations, suggesting a bottleneck and/or rapid fixation of haplotypes following host colonization. Moth emergence coincided with host plant flowering, and phenological differences between host species translated into allochronic isolation between populations feeding on different hosts. Derived moth populations also differed significantly in three ovipositor characters from ancestral populations. These findings suggest rapid host‐specific genetic differentiation, and specialization of moth emergence time and ovipositor morphology following host colonization.  相似文献   

20.
The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host‐plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle‐specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host‐race evolution in the northern range: Host‐plant associated populations were significantly differentiated among syntopic sites (0.054 < FHT < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host‐race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host‐race diversification but suggests the introduction of a stinging nettle‐specific phytoplasma strain by plant‐unspecific vectors. The evolution of host races in the northern range has led to specific vector‐based bois noir disease cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号