首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
近年来,有研究表表明从细胞微环境中转化而来的机械信号可以调控细胞形状和影响细胞的命运。然而,这些机械信号转化成调节细胞生物过程的信号的机制仍然不是十分清楚。最新研究已阐明细胞可通过来自细胞外基质(extracellular matrix,ECM)的机械信号和细胞行为调控之间的相互作用来募集Hippo信号通路中的核心组件YAP/TAZ的作用机制。此外,研究发现在Wnt和Hippo信号之间的串扰是调节细胞命运的核心。这些机制可以解释力学微环境的信号是如何调节细胞行为和决定细胞命运的。本文重点对ECM和YAP/TAZ在决定细胞命运的过程中的作用机制展开系统综述。  相似文献   

13.
14.
YAP/TAZ, downstream transducers of the Hippo pathway, are powerful regulators of cancer growth. How these factors control proliferation remains poorly defined. Here, we found that YAP/TAZ directly regulate expression of key enzymes involved in deoxynucleotide biosynthesis and maintain dNTP precursor pools in human cancer cells. Regulation of deoxynucleotide metabolism is required for YAP‐induced cell growth and underlies the resistance of YAP‐addicted cells to chemotherapeutics targeting dNTP synthesis. During RAS‐induced senescence, YAP/TAZ bypass RAS‐mediated inhibition of nucleotide metabolism and control senescence. Endogenous YAP/TAZ targets and signatures are inhibited by RAS/MEK1 during senescence, and depletion of YAP/TAZ is sufficient to cause senescence‐associated phenotypes, suggesting a role for YAP/TAZ in suppression of senescence. Finally, mechanical cues, such as ECM stiffness and cell geometry, regulate senescence in a YAP‐dependent manner. This study indicates that YAP/TAZ couples cell proliferation with a metabolism suited for DNA replication and facilitates escape from oncogene‐induced senescence. We speculate that this activity might be relevant during the initial phases of tumour progression or during experimental stem cell reprogramming induced by YAP.  相似文献   

15.
16.
17.
18.
19.
Orthodontic tooth movement (OTM) is a periodontal tissue remodeling and regeneration process that is caused by bio-mechanical stimulation. This mechanical–chemical transduction process involves a variety of biological factors and signaling pathways. It has been shown that the Hippo-YAP/TAZ signaling pathway plays a pivotal role in the mechanical–chemical signal transduction process. Moreover, YAP and TAZ proteins interact with RUNX family proteins via different mechanisms. To explore the regulation of the Hippo signaling pathway during periodontal tissue remodeling, we examined the upper first molar OTM model in rats. We examined YAP, TAZ and RUNX2 expression at 12 hours, 24 hours, 2 days (2d), 4 days, 7 days (7d) and 14 days (14d) after force application. Haemotoxylin and eosin staining, immunohistochemical staining and western blot analysis were used to examine the expression level and localization of these proteins. We found that YAP, TAZ and RUNX2 expression started increasing at 2d, YAP and TAZ expression was proportional to the orthodontic force applied until peaking at 7d, and at 14d the expression started to decrease. YAP and TAZ were observed in osteocytes, bone matrix and periodontal ligament cells during OTM. Furthermore, using double labeling immunofluorescence staining, we found that the increase in TAZ expression was associated with RUNX2 expression, however, YAP and RUNX2 showed different expression patterns. These results suggest that the Hippo-YAP/TAZ signaling pathway participates in periodontal tissue remodeling through various mechanisms; TAZ may adjust bone tissue remodeling through RUNX2 during OTM, while YAP may regulate periodontal cell proliferation and differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号