首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen peroxide (H2O2) is an incompletely reduced metabolite of oxygen that has a diverse array of physiological and pathological effects within living cells depending on the extent, timing, and location of its production. Characterization of the cellular functions of H2O2 requires measurement of its concentration selectively in the presence of other oxygen metabolites and with spatial and temporal fidelity in live cells. For the measurement of H2O2 in biological fluids, several sensitive methods based on horseradish peroxidase and artificial substrates (such as Amplex Red and 3,5,3’5’-tetramethylbenzidine) or on ferrous oxidation in the presence of xylenol orange (FOX) have been developed. For measurement of intracellular H2O2, methods based on dihydro compounds such as 2’,7’-dichlorodihydrofluorescein that fluoresce on oxidation are used widely because of their sensitivity and simplicity. However, such probes react with a variety of cellular oxidants including nitric oxide, peroxynitrite, and hypochloride in addition to H2O2. Deprotection reaction-based probes (PG1 and PC1) that fluoresce on H2O2-specific removal of a boronate group rather than on nonspecific oxidation have recently been developed for selective measurement of H2O2 in cells. Furthermore, a new class of organelle-targetable fluorescent probes has been devised by joining PG1 to a substrate of SNAP-tag. Given that SNAP-tag can be genetically targeted to various subcellular organelles, localized accumulation of H2O2 can be monitored with the use of SNAP-tag bioconjugation chemistry. However, given that both dihydro- and deprotection-based probes react irreversibly with H2O2, they cannot be used to monitor transient changes in H2O2 concentration. This drawback has been overcome with the development of redox-sensitive green fluorescent protein (roGFP) probes, which are prepared by the introduction of two redox-sensitive cysteine residues into green fluorescent protein; the oxidation of these residues to form a disulfide results in a conformational change of the protein and altered fluorogenic properties. Such genetically encoded probes react reversibly with H2O2 and can be targeted to various compartments of the cell, but they are not selective for H2O2 because disulfide formation in roGFP is promoted by various cellular oxidants. A new type of H2O2-selective, genetically encoded, and reversible fluorescent probe, named HyPer, was recently prepared by insertion of a circularly permuted yellow fluorescent protein (cpYFP) into the bacterial peroxide sensor protein OxyR.  相似文献   

2.
It is increasingly apparent that nature evolved peroxiredoxins not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Here we ask whether the H2O2 sensing role of Prx can be exploited to develop probes that allow to monitor intracellular H2O2 levels with unprecedented sensitivity. Indeed, simple gel shift assays visualizing the oxidation of endogenous 2-Cys peroxiredoxins have already been used to detect subtle changes in intracellular H2O2 concentration. The challenge however is to create a genetically encoded probe that offers real-time measurements of H2O2 levels in intact cells via the Prx oxidation state. We discuss potential design strategies for Prx-based probes based on either the redox-sensitive fluorophore roGFP or the conformation-sensitive fluorophore cpYFP. Furthermore, we outline the structural and chemical complexities which need to be addressed when using Prx as a sensing moiety for H2O2 probes. We suggest experimental strategies to investigate the influence of these complexities on probe behavior. In doing so, we hope to stimulate the development of Prx-based probes which may spearhead the further study of cellular H2O2 homeostasis and Prx signaling.  相似文献   

3.
The glutathione redox couple (GSH/GSSG) and hydrogen peroxide (H2O2) are central to redox homeostasis and redox signaling, yet their distribution within an organism is difficult to measure. Using genetically encoded redox probes in Drosophila, we establish quantitative in vivo mapping of the glutathione redox potential (EGSH) and H2O2 in defined subcellular compartments (cytosol and mitochondria) across the whole animal during development and aging. A chemical strategy to trap the in vivo redox state of the transgenic biosensor during specimen dissection and fixation expands the scope of fluorescence redox imaging to include the deep tissues of the adult fly. We find that development and aging are associated with redox changes that are distinctly redox couple-, subcellular compartment-, and tissue-specific. Midgut enterocytes are identified as prominent sites of age-dependent cytosolic H2O2 accumulation. A longer life span correlated with increased formation of oxidants in the gut, rather than a decrease.  相似文献   

4.
A new procedure for fluorescent detection of intracellular H2O2 in cells transiently expressing the catalyst Horseradish Peroxidase (HRP) is setup and validated. More specific reaction with HRP largely amplifies oxidation of the redox probes used (2′,7′-dichlorodihydrofluorescein and dihydrorhodamine). Expression of HRP does not affect cell viability. The procedure reveals MAO activity, a primary intracellular H2O2 source, in monolayers of intact transfected cells. The probes oxidation rate responds specifically to the MAO activation/inhibition. Their oxidation by MAO-derived H2O2 is sensitive to intracellular H2O2 competitors: it decreases when H2O2 is removed by pyruvate and it increases when the GSH-dependent removal systems are impaired. Specific response was also measured after addition of extracellular H2O2. Oxidation of the fluorescent probes following reaction of H2O2 with endogenous HRP overcomes most criticisms in their use for intracellular H2O2 detection. The method can be applied for direct determination in plate reader and is proposed to detect H2O2 generation in physio-pathological cell models.  相似文献   

5.
Neurodegenerative diseases, a subset of age-driven diseases, have been known to exhibit increased oxidative stress. The resultant increase in reactive oxygen species (ROS) has long been viewed as a detrimental byproduct of many cellular processes. Despite this, therapeutic approaches using antioxidants were deemed unsuccessful in circumventing neurodegenerative diseases. In recent times, it is widely accepted that these toxic by-products could act as secondary messengers, such as hydrogen peroxide (H2O2), to drive important signaling pathways. Notably, mitochondria are considered one of the major producers of ROS, especially in the production of mitochondrial H2O2. As a secondary messenger, cellular H2O2 can initiate redox signaling through oxidative post-translational modifications (oxPTMs) on the thiol group of the amino acid cysteine. With the current consensus that cellular ROS could drive important biological signaling pathways through redox signaling, researchers have started to investigate the role of cellular ROS in the pathogenesis of neurodegenerative diseases. Moreover, mitochondrial dysfunction has been linked to various neurodegenerative diseases, and recent studies have started to focus on the implications of mitochondrial ROS from dysfunctional mitochondria on the dysregulation of redox signaling. Henceforth, in this review, we will focus our attention on the redox signaling of mitochondrial ROS, particularly on mitochondrial H2O2, and its potential implications with neurodegenerative diseases.Subject terms: Post-translational modifications, Neurodegenerative diseases  相似文献   

6.
7.
Short-chain fatty acids, such as butyrate, play pivotal roles in various physiological processes within the human body. Recent advances in understanding cell death pathways, specifically ferroptosis, have unveiled unique opportunities for therapeutic development. Ferroptosis is linked to iron accumulation and oxidative stress, whereas butyrate has emerged as a cellular protector against oxidative stress, potentially inhibiting ferroptosis. Hydrogen peroxide (H2O2) is a key player in oxidative stress, and its monitoring has gained significance in disease mechanisms. We present an innovative fluorescent probe, HOP , capable of dynamically tracking intracellular H2O2 levels, enabling spatial and temporal visualization. The probe exhibits high accuracy (limit of detection = 0.14 μM) and sensitivity, paving the way for disease diagnosis and treatment innovations. Importantly, HOP displayed minimal toxicity, making it suitable for cellular applications. Cellular imaging experiments demonstrated its ability to penetrate cells and monitor intracellular H2O2 levels accurately. The HOP probe confirmed H2O2 as a critical marker in ferroptosis. Our innovative HOP provides a powerful tool for tracking intracellular H2O2 levels and offers insights into the modulation of ferroptosis, potentially opening new avenues for disease research and therapeutic interventions.  相似文献   

8.
Hydrogen peroxide (H2O2) is recognized as an important signaling molecule in plants. We sought to establish a genetically encoded, fluorescent H2O2 sensor that allows H2O2 monitoring in all major subcompartments of a Chlamydomonas cell. To this end, we used the Chlamydomonas Modular Cloning toolbox to target the hypersensitive H2O2 sensor reduction–oxidation sensitive green fluorescent protein2-Tsa2ΔCR to the cytosol, nucleus, mitochondrial matrix, chloroplast stroma, thylakoid lumen, and endoplasmic reticulum (ER). The sensor was functional in all compartments, except for the ER where it was fully oxidized. Employing our novel sensors, we show that H2O2 produced by photosynthetic linear electron transport (PET) in the stroma leaks into the cytosol but only reaches other subcellular compartments if produced under nonphysiological conditions. Furthermore, in heat-stressed cells, we show that cytosolic H2O2 levels closely mirror temperature up- and downshifts and are independent from PET. Heat stress led to similar up- and downshifts of H2O2 levels in the nucleus and, more mildly, in mitochondria but not in the chloroplast. Our results thus suggest the establishment of steep intracellular H2O2 gradients under normal physiological conditions with limited diffusion into other compartments. We anticipate that these sensors will greatly facilitate future investigations of H2O2 biology in plant cells.

The establishment of a hypersensitive H2O2 sensor in six major compartments of the Chlamydomonas cell reveals steep intracellular H2O2 gradients under normal physiological conditions with limited diffusion into other compartments.  相似文献   

9.
Abstract

Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous hydrogen peroxide (H2O2) by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiological and pathological H2O2 responses.  相似文献   

10.
Hydrogen peroxide (H2O2) is a reactive oxygen species that signals between cells, and H2O2 signaling is essential for diverse cellular processes, including stress response, defense against pathogens, and the regulation of programmed cell death in plants. Although plasma membrane intrinsic proteins (PIPs) have been known to transport H2O2 across cell membranes, the permeability of each family member of PIPs toward H2O2 has not yet been determined in most plant species. In a recent study, we showed that certain isoforms of Arabidopsis thaliana AtPIPs, including AtPIP2;2, AtPIP2;4, AtPIP2;5, and AtPIP2;7, are permeable for H2O2 in yeast cells. Since the expression of PIPs is differently modulated in Arabidopsis by abiotic stress or H2O2 treatment, it is important to investigate the integrated regulation of aquaporin expression and their physiological significance in H2O2 transport and plant response to diverse abiotic stresses.  相似文献   

11.

Background

Hydrogen peroxide (H2O2) is an important signaling compound that has recently been identified as a new substrate for several members of the aquaporin superfamily in various organisms. Evidence is emerging about the physiological significance of aquaporin-facilitated H2O2 diffusion.

Scope of review

This review summarizes current knowledge about aquaporin-facilitated H2O2 diffusion across cellular membranes. It focuses on physicochemical and experimental evidence demonstrating the involvement of aquaporins in the transport of this redox signaling compound and discusses the regulation and structural prerequisites of these channels to transmit this signal. It also provides perspectives about the potential importance of aquaporin-facilitated H2O2 diffusion processes and places this knowledge in the context of the current understanding of transmembrane redox signaling processes.

Major conclusions

Specific aquaporin isoforms facilitate the passive diffusion of H2O2 across biological membranes and control H2O2 membrane permeability and signaling in living organisms.

General significance

Redox signaling is a very important process regulating the physiology of cells and organisms in a similar way to the well-characterized hormonal and calcium signaling pathways. Efficient transmembrane diffusion of H2O2, a key molecule in the redox signaling network, requires aquaporins and makes these channels important players in this signaling process. Channel-mediated membrane transport allows the fine adjustment of H2O2 levels in the cytoplasm, intracellular organelles, the apoplast, and the extracellular space, which are essential for it to function as a signal molecule. This article is part of a Special Issue entitled Aquaporins.  相似文献   

12.
Lysophosphatidic acid (LPA) is a growth factor for many cells including prostate and ovarian cancer-derived cell lines. LPA stimulates H2O2 production which is required for growth. However, there are significant gaps in our understanding of the spatial and temporal regulation of H2O2-dependent signaling and the way in which signals are transmitted following receptor activation. Herein, we describe the use of two reagents, DCP-Bio1 and DCP-Rho1, to evaluate the localization of active protein oxidation after LPA stimulation by detection of nascent protein sulfenic acids. We found that LPA stimulation causes internalization of LPA receptors into early endosomes that contain NADPH oxidase components and are sites of H2O2 generation. DCP-Rho1 allowed visualization of sulfenic acid formation, indicative of active protein oxidation, which was stimulated by LPA and decreased by an LPA receptor antagonist. Protein oxidation sites colocalized with LPAR1 and the endosomal marker EEA1. Concurrent with the generation of these redox signaling-active endosomes (redoxosomes) is the H2O2- and NADPH oxidase-dependent oxidation of Akt2 and PTP1B detected using DCP-Bio1. These new approaches therefore enable detection of active, H2O2-dependent protein oxidation linked to cell signaling processes. DCP-Rho1 may be a particularly useful protein oxidation imaging agent enabling spatial resolution due to the transient nature of the sulfenic acid intermediate it detects.  相似文献   

13.
Reactive oxygen species (ROS) have been considered for some time only in the context of oxidative stress-induced cell damage. In this review, we discuss the growing body of evidence that implicates ROS in general, and hydrogen peroxide (H2O2) in particular, in regulatory events underlying synaptic plasticity. H2O2 is regarded in this context as a specific diffusible signaling molecule. The action of H2O2 is assumed to be carried out via the release of calcium ions from internal stores, modulating the activity of specific calcium-dependent protein phosphatases. These phosphatases eventually affect neuronal plasticity. We discuss the role of H2O2 in these systems, stressing the importance of cellular regulation of H2O2 levels that are altered in aging individuals, in the ability to express plasticity. These studies highlight the function of H2O2 in processes of learning and memory and their change in elderly individuals, irrespective of neurodegeneration found in Alzheimer’s patients.  相似文献   

14.
Reactive oxygen species mediate cellular signaling and neuropathologies. Hence, there is tremendous interest in monitoring (sub)cellular redox conditions. We evaluated the genetically engineered redox sensor HyPer in mouse hippocampal cell cultures. Two days after lipofection, neurons and glia showed sufficient expression levels, and H2O2 reversibly and dose-dependently increased the fluorescence ratio of cytosolic HyPer. Yet, repeated H2O2 treatment caused progressively declining responses, and with millimolar doses an apparent recovery started while H2O2 was still present. Although HyPer should be H2O2 specific, it seemingly responded also to other oxidants and altered cell-endogenous superoxide production. Control experiments with the SypHer pH sensor confirmed that the HyPer ratio responds to pH changes, decreasing with acidosis and increasing during alkalosis. Anoxia/reoxygenation evoked biphasic HyPer responses reporting apparent reduction/oxidation; replacing Cl exerted only negligible effects. Mitochondria-targeted HyPer readily responded to H2O2—albeit less intensely than cytosolic HyPer. With ratiometric two-photon excitation, H2O2 increased the cytosolic HyPer ratio. Time-correlated fluorescence-lifetime imaging microscopy (FLIM) revealed a monoexponential decay of HyPer fluorescence, and H2O2 decreased fluorescence lifetimes. Dithiothreitol failed to further reduce HyPer or to induce reasonable FLIM and two-photon responses. By enabling dynamic recordings, HyPer is superior to synthetic redox-sensitive dyes. Its feasibility for two-photon excitation also enables studies in more complex preparations. Based on FLIM, quantitative analyses might be possible independent of switching excitation wavelengths. Yet, because of its pronounced pH sensitivity, adaptation to repeated oxidation, and insensitivity to reducing stimuli, HyPer responses have to be interpreted carefully. For reliable data, side-by-side pH monitoring with SypHer is essential.  相似文献   

15.
Gases such as ethylene, hydrogen peroxide (H2O2), nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have been recognized as vital signaling molecules in plants and animals. Of these gasotransmitters, NO and H2S have recently gained momentum mainly because of their involvement in numerous cellular processes. It is therefore important to study their various attributes including their biosynthetic and signaling pathways. The present review provides an insight into various routes for the biosynthesis of NO and H2S as well as their signaling role in plant cells under different conditions, more particularly under heavy metal stress. Their beneficial roles in the plant's protection against abiotic and biotic stresses as well as their adverse effects have been addressed. This review describes how H2S and NO, being very small-sized molecules, can quickly pass through the cell membranes and trigger a multitude of responses to various factors, notably to various stress conditions such as drought, heat, osmotic, heavy metal and multiple biotic stresses. The versatile interactions between H2S and NO involved in the different molecular pathways have been discussed. In addition to the signaling role of H2S and NO, their direct role in posttranslational modifications is also considered. The information provided here will be helpful to better understand the multifaceted roles of H2S and NO in plants, particularly under stress conditions.  相似文献   

16.
Previous studies have demonstrated that Notch signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, our aim was to explore the role of the Notch signaling pathway in hydrogen peroxide (H2O2)-induced OSI and the protective effect of curcumin during (H2O2)-induced injury in human umbilical vein endothelial cells (HUVECs). DAPT, a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to study Notch activity. Further, HUVECs were exposed to H2O2 in the absence or presence of curcumin. DAPT and Notch1 siRNA significantly inhibited OSI and the expression of Notch1 and Hes1. Curcumin conferred a protective effect on the HUVECs against H2O2, which was evidenced by improved cell viability, adhesive ability and migratory ability and a decreased apoptotic index, decreased production of reactive oxygen species (ROS) and a reduction in several biochemical parameters. Immunofluorescence and Western blotting analyses demonstrated that H2O2 treatment upregulated the expression of Notch1, Hes1, Caspase3, Bax and cytochrome c downregulated the expression of Bcl2, and treatment with curcumin reversed these effects. We demonstrated for the first time that the inhibition of Notch signaling pathway imparts a protective effect against endothelial OSI. The protective effects of curcumin against OSI are at least in part dependent on Notch1 inhibition.  相似文献   

17.
Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.  相似文献   

18.
Cellular metabolism is inherently linked to the production of oxidizing by-products, including reactive oxygen species (ROS) hydrogen peroxide (H2O2). When present in excess, H2O2 can damage cellular biomolecules, but when produced in coordinated fashion, it typically serves as a mobile signaling messenger. It is therefore not surprising that cell health critically relies on both low-molecular-weight and enzymatic antioxidant components, which protect from ROS-mediated damage and shape the propagation and duration of ROS signals. This review focuses on H2O2–antioxidant cross talk in the endoplasmic reticulum (ER), which is intimately linked to the process of oxidative protein folding. ER-resident or ER-regulated sources of H2O2 and other ROS, which are subgrouped into constitutive and stimulated sources, are discussed and set into context with the diverse antioxidant mechanisms in the organelle. These include two types of peroxide-reducing enzymes, a high concentration of glutathione derived from the cytosol, and feedback-regulated thiol–disulfide switches, which negatively control the major ER oxidase ER oxidoreductin-1. Finally, new evidence highlighting emerging principles of H2O2-based cues at the ER will likely set a basis for establishing ER redox processes as a major line of future signaling research. A fundamental problem that remains to be solved is the specific, quantitative, time resolved, and targeted detection of H2O2 in the ER and in specialized ER subdomains.  相似文献   

19.
An approach of high sensitivity and selectivity for hydrogen peroxide (H2O2) detection is highly demanded due to its important roles in regulating diverse biological process. In this work, we introduced an easily synthesized fluorescent “turn off” probe, BNBD. It is designed based on the core structure of 4-chloro-7-nitrobenzofurazan as a fluorophore and incorporated with a specific H2O2-reactive group, aryl boronate, for sensitive and selective detection of H2O2. We demonstrated its selectivity by incubating the probe with other types of ROS, and measured the limit of detection of BNBD as 1.8 nM. BNBD is also conducive to H2O2 detection at physiological conditions. We thus applied it to detect both exogenous and endogenous changes of H2O2 in living cells by confocal microscopy, supporting its future applications to selectively monitor H2O2 levels and identify H2O2-related physiological or pathological responses from live cells or tissues in the near future.  相似文献   

20.
Reduction–oxidation-sensitive green fluorescent proteins (roGFPs) have been demonstrated to be valuable tools in sensing cellular redox changes in mammalian cells and model plants, yet have not been applied in crops such as maize. Here we report the characteristics of roGFP1 in transiently transformed maize mesophyll protoplasts in response to environmental stimuli and knocked-down expression of ROS-scavenging genes. We demonstrated that roGFP1 in maize cells ratiometrically responds to cellular redox changes caused by H2O2 and DTT, as it does in mammalian cells and model plants. Moreover, we found that roGFP1 is sensitive enough to cellular redox changes caused by genetic perturbation of single ROS genes, as exemplified by knocked-down expression of individual ZmAPXs, in maize protoplasts under controlled culture conditions and under stress conditions imposed by H2O2 addition. These data provide evidence that roGFP1 functions in maize cells as a biosensor for cellular redox changes triggered by genetic lesion of single ROS genes even under stress conditions, and suggest a potential application of roGFP1 in large-scale screening for maize mutants of ROS signaling involved in development and stress resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号