共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent innovations in microscopy and digital image processing have greatly enhanced the power of biological imaging. Basic principles of several new methods in light and electron microscopy will be discussed, and examples presented of their application to cell and molecular biology. 相似文献
3.
Erythritol is a natural sweetener commonly used in the food and pharmaceutical industries. Produced by microorganisms as an osmoprotectant, it is an ideal sucrose substitute for diabetics or overweight persons due to its almost zero calorie content. Currently, erythritol is produced on an industrial scale through the fermentation of sugars by some yeasts, such as Moniliella sp. However, the popularity of erythritol as a sweetener is still small because of its high retail price. This creates an opportunity for further process improvement. Recent years have brought the rapid development of erythritol biosynthesis methods from the low-cost substrates, and a better understanding of the metabolic pathways leading to erythritol synthesis. The yeast Yarrowia lipolytica emerges as an organism effectively producing erythritol from pure or crude glycerol. Moreover, novel erythritol producing organisms and substrates may be taken into considerations due to metabolic engineering. This review focuses on the modification of erythritol production to use low-cost substrates and metabolic engineering of the microorganisms in order to improve yield and productivity. 相似文献
4.
Hydrogen peroxide (H2O2) is emerging as a newly recognized messenger in cellular signal transduction. However, a substantial challenge in elucidating its diverse roles in complex biological environments is the lack of methods for probing this reactive oxygen metabolite in living systems with molecular specificity. Here we report the synthesis and application of Peroxy Green 1 (PG1) and Peroxy Crimson 1 (PC1), two new fluorescent probes that show high selectivity for H2O2 and are capable of visualizing endogenous H2O2 produced in living cells by growth factor stimulation, including the first direct imaging of peroxide produced for brain cell signaling. The combined features of reactive oxygen species selectivity, sensitivity to signaling levels of H2O2, and live-cell compatibility presage many new opportunities for PG1, PC1 and related synthetic reagents for exploring the physiological roles of H2O2 in living systems with molecular imaging. 相似文献
5.
Reviews in Environmental Science and Bio/Technology - Studies on human exposure to indoor air pollution reveal that indoor environments could be at least twice as polluted as outdoor environments.... 相似文献
6.
Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals. 相似文献
7.
Short synthetic oligonucleotides are finding wide variety of applications in area of genomics and medicinal chemistry. Since the isolation of nucleic acids to the mapping of human genome, chemical synthesis of nucleic acids has undergone tremendous advancements. Further improvements in this area such as, introduction of high throughput synthesizers, better coupling reagents, improved polymer supports, newer sets of protecting groups for exocyclic amino groups of nucleic bases and introduction of universal polymer supports have completely revolutionized the entire field of nucleic acids chemistry. Most of these developments have been targeted to assemble these molecules more efficiently in a cost-effective manner and rapidly. Preparation of oligonucleotide conjugates has further helped in identifying the newer areas of their applications. A number of conjugates with biological and abiological ligands have been discussed in this article along with their possible wide spectrum of applications. Recently developed microarray technology, which refers to attachment of short oligonucleotides on a solid/polymeric surface, has proved to be useful for screening of genetic mutations, study of polymorphism, as diagnostics, etc. The major developments in these areas are presented in the review. 相似文献
9.
Abstract: Eleven adenosylcorrinoid-dependent rearrangements and elimination reactions have been described during the last four decades of vitamin B 12 research. In contrast, only the cobamide-dependent methionine synthase was well established as a corrinoid-dependent methyl transfer reaction. Yet, investigations during the last few years revealed nine additional corrinoid-dependent methyltransferases. Many of these reactions are catalyzed by bacteria which possess a distinct C 1 metabolism. Notably acetogenic and methanogenic bacteria carry out such methyl transfers in their anabolism and catabolism. Tetrahydrofolate or a similar pterine derivative is a key intermediate in these reactions. It functions as methyl acceptor and the methylated tetrahydrofolate serves as a methyl donor. 相似文献
10.
Mannitol is a fructose-derived, 6-carbon sugar alcohol that is widely found in bacteria, yeasts, fungi, and plants. Because
of its desirable properties, mannitol has many applications in pharmaceutical products, in the food industry, and in medicine.
The current mannitol chemical manufacturing process yields crystalline mannitol in yields below 20 mol% from 50% glucose/50%
fructose syrups. Thus, microbial and enzymatic mannitol manufacturing methods have been actively investigated, in particular
in the last 10 years. This review summarizes the most recent advances in biological mannitol production, including the development
of bacterial-, yeast-, and enzyme-based transformations. 相似文献
11.
The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m(3) exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry. 相似文献
12.
The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided. 相似文献
13.
多巴胺神经系统在神经退行性疾病和精神紊乱中充当了主要角色,比如帕金森病、亨廷顿病、迟发性运动障碍、精神分裂症。以多巴胺能神经系统为靶点的PET显像可以了解多巴胺合成、受体密度和状态改变,为神经系统疾病的早期诊断、疗效监测、发病机制以及脑认知功能的研究等方面提供客观、科学的观察手段。本文综述了以多巴胺受体、多巴胺转运体及囊泡单胺转运体为靶点的PET显像剂的研究进展。 相似文献
14.
The status of microgravity research in the crystallization of biological macromolecules is presented. Currently, two paths of investigation are being undertaken. The first is the production of high-quality crystals in space for biotechnology and research applications. The second is the study of the mechanisms by which these superior crystals are formed in microgravity. Emphasis is also placed on macromolecules and the exploration of the flash-frozen-samples-Dewar approach for multiple crystallizations. Future space flight opportunities to continue this research are discussed. 相似文献
15.
3-Hydroxypropionic acid (3-HP) is a valuable platform chemical that can be produced biologically from glucose or glycerol. This review article provides an overview and the current status of microbial 3-HP production. The constraints of microbial 3-HP production and possible solutions are also described. Finally, future prospects of biological 3-HP production are discussed. 相似文献
16.
Photoactivatable fluorophores (PAFs) are powerful imaging probes for tracking molecular and cellular dynamics with high spatiotemporal resolution in biological systems. Recent developments in biological microscopy have raised new demands for engineering new PAFs with improved properties, such as high two photon excitation efficiency, reversibility, cellular delivery and targeting. Here we review the history and some of the recent developments in this area, emphasizing our efforts in developing a new class of caged coumarins and related imaging methods for studying dynamic cell-cell communication through gap junction channels, and in extending the application of these caged coumarins to new areas including spatiotemporal control of microRNA activity in vivo. 相似文献
17.
The increasing demand in detecting H(2)O(2) under various experimental conditions is only partly fulfilled by most conventional peroxidase-based assays. This article describes a sensitive and nonenzymatic H(2)O(2) assay that is based on the chemiluminescence reaction of luminol with hypochlorite. It allows the determination of H(2)O(2) down to nanomolar concentrations. Actual H(2)O(2) concentrations rather than a turnover of H(2)O(2) can be determined in monolayer cultures, perfusates, suspensions of intact cells, organelles, and crude homogenates. One of the strengths of this assay is that it may be used to assess fast enzyme kinetics (catalase, glutathione peroxidase, oxidases) at very low H(2)O(2) concentrations. Its use together with a glucose oxidase/catalase system appears to be a powerful tool in studying signal functions of H(2)O(2) in various biological systems on a quantitative basis. Several applications are discussed in detail to demonstrate the technical requirements and analytical potentials. 相似文献
18.
Myoblast fusion in the Drosophila embryos is a complex process that includes changes in cell movement, morphology and behavior over time. The advent of fluorescent proteins (FPs) has made it possible to track and image live cells, to capture the process of myoblast fusion, and to carry out quantitative analysis of myoblasts in real time. By tagging proteins with FPs, it is also possible to monitor the subcellular events that accompany the fusion process. Herein, we discuss the recent progress that has been made in imaging myoblast fusion in Drosophila, reagents that are now available, and microscopy conditions to consider. Using an Actin-FP fusion protein along with a membrane marker to outline the cells, we show the dynamic formation and breakdown of F-actin foci at sites of fusion. We also describe the methods used successfully to show that these foci are primarily if not wholly present in the fusion-competent myoblasts. 相似文献
19.
Research in the development of new bioceramics with local drug delivery capability for bone regeneration technologies is receiving great interest by the scientific biomedical community. Among bioceramics, silica-based ordered mesoporous materials are excellent candidates as bone implants due to two main reasons: first, the bioactive behavior of such materials in contact with simulated body fluids, ie, a carbonate hydroxyapatite similar to the mineral phase of bone is formed onto the materials surfaces. Second, their capability of acting as delivery systems of a large variety of biologically active molecules, including drugs to treat bone infection, inflammation or diseases, and molecules that promote bone tissue regeneration, such as peptides, proteins, growth factors, and other osteogenic agents. The recent chemical and technological advances in the nanometer scale has allowed the design of mesoporous silicas with tailored structural and textural properties aimed at achieving a better control over molecule loading and release kinetics. Moreover organic modification of mesoporous silica walls has been revealed as a key strategy to modulate molecule adsorption and delivery rates. 相似文献
20.
Introduction: Schistosomiasis is a neglected tropical disease affecting hundreds of millions of people worldwide. Recent advances in the field of proteomics and the development of new and highly sensitive mass spectrometers and quantitative techniques have provided new tools for advancing the molecular biology, cell biology, diagnosis and vaccine development for public health threats such as schistosomiasis. Areas covered: In this review we describe the latest advances in research that utilizes proteomics-based tools to address some of the key challenges to developing effective interventions against schistosomiasis. We also provide information about the potential of extracellular vesicles to advance the fight against this devastating disease. Expert commentary: Different proteins are already being tested as vaccines against schistosomiasis with promising results. The re-analysis of the Schistosoma spp. proteomes using new and more sensitive mass spectrometers as well as better separation approaches will help identify more vaccine targets in a rational and informed manner. In addition, the recent development of new proteome microarrays will facilitate characterisation of novel markers of infection as well as new vaccine and diagnostic candidate antigens. 相似文献
|