首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many peatlands were affected by drainage in the past, and restoration of their water regime aims to bring back their original functions. The purpose of our study was to simulate re-wetting of soils of different types of drained peatlands (bogs and minerotrophic mires, located in the Sumava Mountains, Czech Republic) under laboratory conditions (incubation for 15 weeks) and to assess possible risks of peatland water regime restoration - especially nutrient leaching and the potentials for CO2 and CH4 production. After re-wetting of soils sampled from drained peatlands (simulated by anaerobic incubation) (i) phosphorus concentration (SRP) did not change in any soil, (ii) concentration of ammonium and dissolved organic nitrogen (DON) increased, but only in a drained fen, (iii) DOC increased significantly in the drained fen and degraded drained bog, (iv) CO2 production decreased, (v) CH4 production and the number of methanogens increased in all soils, and (vi) archaeal methanogenic community composition was also affected by re-wetting; it differed significantly between drained and pristine fens, whereas it was more similar between drained and pristine bogs. Overall, the soils from fens reacted more dynamically to re-wetting than the bogs, and therefore, some nutrients (especially nitrogen) and DOC leaching may be expected from drained fens after their water regime restoration. However, if compared to their state before restoration, ammonium and phosphorus leaching should not increase and leaching of nitrates and DON should even decrease after restoration, especially during the vegetation season. Further, CO2 production in soils of fens and bogs should decrease after their water regime restoration, whereas CH4 production in soils should increase. However, we cannot derive any clear conclusions about CH4 emissions from the ecosystems based on this study, as they depend strongly on environmental factors and on the actual activity of methanotrophs in situ.  相似文献   

2.
Northern peatlands accumulate atmospheric CO2 thus counteracting climate warming. However, CH4 which is more efficient as a greenhouse gas than CO2, is produced in the anaerobic decomposition processes in peat. When peatlands are taken for forestry their water table is lowered by ditching. We studied long-term effects of lowered water table on the development of vegetation and the annual emissions of CO2, CH4 and N2O in an ombrotrophic bog and in a minerotrophic fen in Finland. Reclamation of the peat sites for forestry had changed the composition and coverage of the field and ground layer species, and increased highly the growth of tree stand at the drained fen. In general, drainage increased the annual CO2 emissions but the emissions were also affected by the natural fluctuations of water table. In contrast to CO2, drainage had decreased the emissions of CH4, the drained fen even consumed atmospheric CH4. CO2 and CH4 emissions were higher in the virgin fen than in the virgin bog. There were no N2O emissions from neither type of virgin sites. Drainage had, however, highly increased the N2O emissions from the fen. The results suggest that post-drainage changes in gas fluxes depend on the trophy of the original mires.  相似文献   

3.
Methane-oxidizing bacteria (MOB) are the only biological sinks for methane (CH4). Drainage of peatlands is known to decrease overall CH4 emission, but the effect on MOB is unknown. The objective of this work was to characterize the MOB community and activity in two ecohydrologically different pristine peatland ecosystems, a fen and a bog, and their counterparts that were drained in 1961. Oligotrophic fens are groundwater-fed peatlands, but ombrotrophic bogs receive additional water and nutrients only from rainwater. The sites were sampled in August 2003 down to 10 cm below the water table (WT), and cores were divided into 10-cm subsamples. CH4 oxidation was measured by gas chromatography (GC) to characterize MOB activity. The MOB community structure was characterized by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) and sequencing methods using partial pmoA and mmoX genes. The highest CH4 oxidation rates were measured from the subsamples 20–30 and 30–40 cm above WT at the pristine oligotrophic fen (12.7 and 10.5 μmol CH4 dm−3 h−1, respectively), but the rates decreased to almost zero in the vicinity of WT. In the pristine ombrotrophic bog, the highest oxidation rate at 0–10 cm was lower than in the fen (8.10 μmol CH4 dm−3 h−1), but in contrast to the fen, oxidation rates of 4.5 μmol CH4 dm−3 h−1 were observed at WT and 10 cm below WT. Drainage reduced the CH4 oxidation rates to maximum values of 1.67 and 5.77 μmol CH4 dm−3 h−1 at 30–40 and 20–30 cm of the fen and bog site, respectively. From the total of 13 pmoA-derived DGGE bands found in the study, 11, 3, 6, and 2 were observed in the pristine fen and bog and their drained counterparts, respectively. According to the nonmetric multidimensional scaling of the DGGE banding pattern, the MOB community of the pristine fen differed from the other sites. The majority of partial pmoA sequences belonged to type I MOB, whereas the partial mmoX bands that were observed only in the bog sites formed a distinct group relating more to type II MOB. This study indicates that fen and bog ecosystems differ in MOB activity and community structure, and both these factors are affected by drainage.  相似文献   

4.
Winter CO2 CH4 and N2O fluxes on some natural and drained boreal peatlands   总被引:7,自引:0,他引:7  
CO2 and CH4 fluxes during the winter were measured at natural and drained bog and fen sites in eastern Finland using both the closed chamber method and calculations of gas diffusion along a concentration gradient through the snowpack. The snow diffusion results were compared with those obtained by chamber, but the winter flux estimates were derived from chamber data only. CH4 emissions from a poor bog were lower than those from an oligotrophic fen, while both CO2 and CH4 fluxes were higher in theCarex rostrata- occupied marginal (lagg) area of the fen than in the slightly less fertile centre. Average estimated winter CO2-C losses from virgin and drained forested peatlands were 41 and 68 g CO2-C m–2, respectively, accounting for 23 and 21% of the annual total CO2 release from the peat. The mean release of CH4-C was 1.0 g in natural bogs and 3.4 g m–2 in fens, giving rise to winter emissions averaging to 22% of the annual emission from the bogs and 10% of that from the fens. These wintertime carbon gas losses in Finnish natural peatlands were even greater than reported average long-term annual C accumulation values (less than 25g C m–2). The narrow range of 10–30% of the proportion of winter CO2 and CH4 emissions from annual emissions found in Finnish peatlands suggest that a wider generalization in the boreal zone is possible. Drained forested bogs emitted 0.3 g CH4-C m–2 on the average, while the effectively drained fens consumed an average of 0.01 g CH4-C m–2. Reason for the low CH4. efflux or net oxidation in drained peatlands probably lies in low substrate supply and thus low CH4 production in the anoxic deep peat layers. N2O release from a fertilized grassland site in November–May was 0.7 g N2O m–2, accounting for 38% of the total annual emission, while a forested bog released none and two efficiently drained forested fens 0.09 (28% of annual release) and 0.04 g N2O m–2 (27%) during the winter, respectively.  相似文献   

5.
Drainage of peatlands for forestry starts a succession of ground vegetation in which mire species are gradually replaced by forest species. Some mire plant communities vanish quickly following the water-level drawdown; some may prevail longer in the moister patches of peatland. Drainage ditches, as a new kind of surface, introduce another component of spatial variation in drained peatlands. These variations were hypothesized to affect methane (CH4) fluxes from drained peatlands. Methane fluxes from different plant communities and unvegetated surfaces, including ditches, were measured at the drained part of Lakkasuo mire, Central Finland. The fluxes were found to be related to peatland site type, plant community, water-table position and soil temperature. At nutrient-rich fen sites fluxes between plant communities differed only a little: almost all plots acted as CH4 sinks (−0.9 to −0.4 mg CH4 m−2 d−1), with the exception of Eriophorum angustifolium Honck. communities, which emitted 0.9 g CH4 m−2 d−1. At nutrient-poor bog site the differences between plant communities were clearer. The highest emissions were measured from Eriophorum vaginatum L. communities (29.7 mg CH4 m−2 d−1), with a decreasing trend to Sphagna (10.0 mg CH4 m−2 d−1) and forest moss communities (2.6 mg CH4 m−2 d−1). CH4 emissions from different kinds of ditches were highly variable, and extremely high emissions (summertime averages 182–600 mg CH4 m−2 d−1) were measured from continuously water-covered ditches at the drained fen. Variability in the emissions was caused by differences in the origin and movement of water in the ditches, as well as differences in vegetation communities in the ditches. While drainage on average greatly decreases CH4 emissions from peatlands, a great spatial variability in fluxes is emerged. Emissions from ditches constantly covered with water, may in some cases have a great impact on the overall CH4 emissions from drained peatlands.  相似文献   

6.

Anaerobic microbial activity in northern peat soils most often results in more carbon dioxide (CO 2 ) production than methane (CH4) production. This study examined why methanogenic conditions (i.e., equal molar amounts of CH4 production and CO2 production) prevail so infrequently. We used peat soils from two ombrotrophic bogs and from two rheotrophic fens. The former two represented a relatively dry bog hummock and a wet bog hollow, and the latter two represented a forested fen and a sedge-dominated fen. We quantified gas production rates in soil samples incubated in vitro with and without added metabolic substrates (glucose, ethanol, H2/CO2). None of the peat soils exhibited methanogenic conditions when incubated in vitro for a short time (< 5 days) and without added substrates. Incubating some samples > 50 days without added substrates led to methanogenic conditions in only one of four experiments. The anaerobic CO2:CH4 production ratio ranged from 5:1 to 40:1 in peat soil without additions and was larger in samples from the dry bog hummock and forested fen than the wet bog hollow and sedge fen. Adding ethanol or glucose separately to peat soils led to methanogenic conditions within 5 days after the addition by stimulating rates of CH4 production, suggesting CH4 production from both hydrogenotrophic and acetoclastic methanogenesis. Our results suggest that methanogenic conditions in peat soils rely on a constant supply of easily decomposable metabolic substrates. Sample handling and incubation procedures might obscure methanogenic conditions in peat soil incubated in vitro.  相似文献   

7.
The main objectives of this study were to uncover the pathways used for methanogenesis in three different boreal peatland ecosystems and to describe the methanogenic populations involved. The mesotrophic fen had the lowest proportion of CH4 produced from H2-CO2. The oligotrophic fen was the most hydrogenotrophic, followed by the ombrotrophic bog. Each site was characterized by a specific group of methanogenic sequences belonging to Methanosaeta spp. (mesotrophic fen), rice cluster-I (oligotrophic fen), and fen cluster (ombrotrophic bog).  相似文献   

8.
Northern peatlands constitute a significant source of atmospheric methane (CH4). However, management of undisturbed peatlands, as well as the restoration of disturbed peatlands, will alter the exchange of CH4 with the atmosphere. The aim of this systematic review and meta‐analysis was to collate and analyze published studies to improve our understanding of the factors that control CH4 emissions and the impacts of management on the gas flux from northern (latitude 40° to 70°N) peatlands. The analysis includes a total of 87 studies reporting measurements of CH4 emissions taken at 186 sites covering different countries, peatland types, and management systems. Results show that CH4 emissions from natural northern peatlands are highly variable with a 95% CI of 7.6–15.7 g C m?2 year?1 for the mean and 3.3–6.3 g C m?2 year?1 for the median. The overall annual average (mean ± SD) is 12 ± 21 g C m?2 year?1 with the highest emissions from fen ecosystems. Methane emissions from natural peatlands are mainly controlled by water table (WT) depth, plant community composition, and soil pH. Although mean annual air temperature is not a good predictor of CH4 emissions by itself, the interaction between temperature, plant community cover, WT depth, and soil pH is important. According to short‐term forecasts of climate change, these complex interactions will be the main determinant of CH4 emissions from northern peatlands. Drainage significantly (p < .05) reduces CH4 emissions to the atmosphere, on average by 84%. Restoration of drained peatlands by rewetting or vegetation/rewetting increases CH4 emissions on average by 46% compared to the original premanagement CH4 fluxes. However, to fully evaluate the net effect of management practice on the greenhouse gas balance from high latitude peatlands, both net ecosystem exchange (NEE) and carbon exports need to be considered.  相似文献   

9.
Atmospheric CO2 and CH4 exchange in peatlands is controlled by water table levels and soil moisture, but impacts of short periods of dryness and rainfall are poorly known. We conducted drying-rewetting experiments with mesocosms from an ombrotrophic northern bog and an alpine, minerotrophic fen. Efflux of CO2 and CH4 was measured using static chambers and turnover and diffusion rates were calculated from depth profiles of gas concentrations. Due to a much lower macroporosity in the fen compared to the bog peat, water table fluctuated more strongly when irrigation was stopped and resumed, about 11 cm in the fen and 5 cm in the bog peat. Small changes in air filled porosity caused CO2 and CH4 concentrations in the fen peat to be insensitive to changes in water table position. CO2 emission was by a factor of 5 higher in the fen than in the bog mesocosms and changed little with water table position in both peats. This was probably caused by the importance of the uppermost, permanently unsaturated zone for auto- and heterotrophic CO2 production, and a decoupling of air filled porosity from water table position. CH4 emission was <0.4 mmol m?2 day?1 in the bog peat, and up to >12.6 mmol m?2 day?1 in the fen peat, where it was lowered by water table fluctuations. CH4 production was limited to the saturated zone in the bog peat but proceeded in the capillary fringe of the fen peat. Water table drawdown partly led to inhibition of methanogenesis in the newly unsaturated zone, but CH4 production appeared to continue after irrigation without time-lag. The identified effects of irrigation on soil moisture and respiration highlight the importance of peat physical properties for respiratory dynamics; but the atmospheric carbon exchange was fairly insensitive to the small-scale fluctuations induced.  相似文献   

10.
《Geomicrobiology journal》2013,30(6):563-577
Rates of methane (CH4) production vary considerably among northern peat-forming wetlands, and it is not clear whether variability is caused by environmental factors affecting CH4 production or differences in methanogen communities. We investigated CH4 production and emission dynamics concomitantly with 16S rRNA gene sequence-based community analysis of Archaea in two contrasting peat-forming northern wetlands, an ombrotrophic bog and a minerotrophic conifer swamp. Individual measurements of CH4 emissions to the atmosphere followed a lognormal distribution pattern in both sites, and mean rates were 30× greater in the bog site. Rates of CH4 production measured in vitro were initially 3× greater in the bog than in the conifer swamp; although, after 30 days of incubation, production rates were similar suggesting that in situ environmental conditions limited production in the conifer swamp. Amplified ribosomal DNA restriction analysis (ARDRA) and rarefaction techniques indicated that both sites had similar levels of archaeal richness, with 27 unique taxa in the bog and 23 taxa in the conifer swamp. However, the bog had more pronounced dominance of a few taxa, whereas the conifer swamp had more even distribution among taxa. A 16S rRNA gene sequence-based phylogenetic analysis indicated high levels of diversity with similarity to known methanogenic families Methanosarcinaceae, Methanosaetaceae, Methanobacteriaceae, and likely Methanomicrobiaceae as well as two additional lineages previously characterized as groups of yet uncultivated Euryarchaeota commonly occurring in flooded rice soils. Therefore, sites with low and high rates of CH4 production supported very diverse methanogenic communities.  相似文献   

11.
Bog ecosystems are sensitive to anthropogenic disturbance, including drainage and air pollution. Carbon (C) balance measurements to determine the effect of disturbance on bog functioning are laborious; therefore reliable proxies for C fluxes that could facilitate upscaling from single studies to a larger scale would be valuable. We measured peat CO2 emissions (R s), CH4 efflux and vegetation characteristics in four bog areas that formed a gradient from pristine to severely disturbed peatlands, affected by drainage, peat mining, alkaline air pollution and underground oil-shale mining. We expected that sites experiencing higher human impact (i.e., the vegetation was more distinct from that of a natural bog) would have higher R s and lower CH4 emissions, but differences in peat C emissions between the most disturbed and pristine sites were not significant. Growing period median R s ranged from 0.5 to 2.2 g C m?2 day?1 for our plots; methane emissions, measured from July to December were an order of magnitude lower, ranging from ?5.9 to 126.7 mg C m?2 day?1. R s and CH4 emissions were primarily determined by water table depth, as was tree stand productivity. Therefore, stand structural parameters could potentially be good indicators of soil C emissions from poorly drained forested bogs.  相似文献   

12.
王怡萌  段磊磊  陈聪  王铭  王升忠  赵婧 《生态学报》2023,43(11):4583-4593
泥炭地水文条件影响泥炭地生物地球化学循环,控制和维持着泥炭地生态系统的结构和功能,是泥炭地生态恢复的重要前提。然而,目前关于恢复泥炭地土壤碳排放对不同水位的响应尚不明确。以长白山区天然(NP)、退耕(DP)及实施不同水文管理的恢复泥炭地(低水位(LR)、高水位(HR)与高低交替水位(H-LR))为研究对象,采用静态箱-气相色谱法对研究区泥炭地进行生长季(6-10月)土壤CO2、CH4排放监测。结果表明:温度和水位变化是研究区泥炭地土壤CO2、CH4排放季节变化的主控因子。H-LR受水位控制的影响,生长季土壤CO2排放速率波动剧烈,其它水位管理恢复区土壤CO2排放速率呈单峰型排放模式,且均与近地表温度呈指数相关(P<0.05)。除HR外,土壤CO2排放速率与水位呈显著负相关(P<0.05)。生长季,研究区HR土壤CH4排放速率呈双峰型,H-LR与NP的土壤CH4排放呈单峰型,与近地表温度呈指数相关(P<0.05),LR水位与CH4排放速率显著正相关(P<0.05)。研究区不同水位管理恢复泥炭地土壤碳排放差异显著,虽然HR的土壤CO2-C累积碳排放量显著低于其它水位恢复区,但其土壤CH4-C累积碳排放量和综合增温潜势显著高于其它水位恢复区(P<0.05)。LR的累积碳排放量显著低于退化泥炭地,且其综合增温潜势最低。因此,建议在泥炭地恢复初期将低水位管理作为短期策略,以更好地恢复泥炭地碳汇功能,减弱其增温潜势。  相似文献   

13.
The moss layer transfer technique removes the top layer of vegetation from donor sites as a method to transfer propagules and restore degraded or reclaimed peatlands. As this technique is new, little is known about the impacts of moss layer transfer on vegetation and carbon fluxes following harvest. We monitored growing season carbon dioxide (CO2) and methane (CH4) fluxes as well as plant communities at donor sites and neighbouring natural peatland sites in an ombrotrophic bog and minerotrophic fen in Alberta, Canada from which material was harvested between 1 and 6 years prior to the study. Plant recovery at all donor sites was rapid with an average of 72% total plant cover one growing season after harvest at the fen and an average of 87% total plant cover two growing seasons after harvest at the bog. Moss cover also returned, averaging 84% 6 years after harvest at the bog. The majority of natural peatlands in western Canada are treed and tree recruitment at the donor sites was limited. Methane emissions were higher from donor sites compared to natural sites due to the high water table and greater sedge cover. Carbon budgets suggested that the donor fen and bog sites released higher CO2 and CH4 over the growing season compared to adjacent natural sites. However, vegetation re-establishment on donor sites was rapid, and it is possible that these sites will return to their original carbon-cycle functioning after disturbance, suggesting that donor sites may recover naturally without implementing management strategies.  相似文献   

14.
Climate change will directly affect carbon and nitrogen mineralization through changes in temperature and soil moisture, but it may also indirectly affect mineralization rates through changes in soil quality. We used an experimental mesocosm system to examine the effects of 6‐year manipulations of infrared loading (warming) and water‐table level on the potential anaerobic nitrogen and carbon (as carbon dioxide (CO2) and methane (CH4) production) mineralization potentials of bog and fen peat over 11 weeks under uniform anaerobic conditions. To investigate the response of the dominant methanogenic pathways, we also analyzed the stable isotope composition of CH4 produced in the samples. Bog peat from the highest water‐table treatment produced more CO2 than bog peat from drier mesocosms. Fen peat from the highest water‐table treatment produced the most CH4. Cumulative nitrogen mineralization was lowest in bog peat from the warmest treatment and lowest in the fen peat from the highest water‐table treatment. As all samples were incubated under constant conditions, observed differences in mineralization patterns reflect changes in soil quality in response to climate treatments. The largest treatment effects on carbon mineralization as CO2 occurred early in the incubations and were ameliorated over time, suggesting that the climate treatments changed the size and/or quality of a small labile carbon pool. CH4 from the fen peat appeared to be predominately from the acetoclastic pathway, while in the bog peat a strong CH4 oxidation signal was present despite the anaerobic conditions of our incubations. There was no evidence that changes in soil quality have lead to differences in the dominant methanogenic pathways in these systems. Overall, our results suggest that even relatively short‐term changes in climate can alter the quality of peat in bogs and fens, which could alter the response of peatland carbon and nitrogen mineralization to future climate change.  相似文献   

15.
Methanogen Communities in a Drained Bog: Effect of Ash Fertilization   总被引:1,自引:0,他引:1  
Forestry practises such has drainage have been shown to decrease emissions of the greenhouse gas methane (CH4) from peatlands. The aim of the study was to examine the methanogen populations in a drained bog in northern Finland, and to assess the possible effect of ash fertilization on potential methane production and methanogen communities. Peat samples were collected from control and ash fertilized (15,000 kg/ha) plots 5 years after ash application, and potential CH4 production was measured. The methanogen community structure was studied by DNA isolation, PCR amplification of the methyl coenzyme-M reductase (mcr) gene, denaturing gradient gel electrophoresis (DGGE), and restriction fragment length polymorphism (RFLP) analysis. The drained peatland showed low potential methane production and methanogen diversity in both control and ash-fertilized plots. Samples from both upper and deeper layers of peat were dominated by three groups of sequences related to Rice cluster-I hydrogenotroph methanogens. Even though pH was marginally greater in the ash-treated site, the occurrence of those sequences was not affected by ash fertilization. Interestingly, a less common group of sequences, related to the Fen cluster, were found only in the fertilized plots. The study confirmed the depth related change of methanogen populations in peatland.  相似文献   

16.
Rewetting of drained peatlands has been recommended to reduce CO2 emissions and to restore the carbon sink function of peatlands. Recently, the combination of rewetting and biomass production (paludiculture) has gained interest as a possible land use option in peatlands for obtaining such benefits of lower CO2 emissions without losing agricultural land. This study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different groundwater levels (GWLs), that is 0, 10, 20 cm below the soil surface, representing rewetted peat soils, and 30 and 40 cm below the soil surface, representing drained peat soils. Net ecosystem exchange (NEE) of CO2 and CH4 emissions was measured during the growing period of RCG (May to September) using transparent and opaque closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha?1) than drained peat soils (15 Mg ha?1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than from drained peat soils, but net uptake of CO2 was higher from rewetted peat soils. Cumulative CH4 emissions were negligible (0.01 g CH4 m?2) from drained peat soils but were significantly higher (4.9 g CH4 m?2) from rewetted peat soils during measurement period (01 May–15 September 2013). The extrapolated annual C balance was 0.03 and 0.68 kg C m?2 from rewetted and drained peat soils, respectively, indicating that rewetting and paludiculture can reduce the loss of carbon from peatlands.  相似文献   

17.
The active methanotroph community was investigated in two contrasting North American peatlands, a nutrient-rich sedge fen and nutrient-poor Sphagnum bog using in vitro incubations and 13C-DNA stable-isotope probing (SIP) to measure methane (CH4) oxidation rates and label active microbes followed by fingerprinting and sequencing of bacterial and archaeal 16S rDNA and methane monooxygenase (pmoA and mmoX) genes. Rates of CH4 oxidation were slightly, but significantly, faster in the bog and methanotrophs belonged to the class Alphaproteobacteria and were similar to other methanotrophs of the genera Methylocystis, Methylosinus, and Methylocapsa or Methylocella detected in, or isolated from, European bogs. The fen had a greater phylogenetic diversity of organisms that had assimilated 13C, including methanotrophs from both the Alpha- and Gammaproteobacteria classes and other potentially non-methanotrophic organisms that were similar to bacteria detected in a UK and Finnish fen. Based on similarities between bacteria in our sites and those in Europe, including Russia, we conclude that site physicochemical characteristics rather than biogeography controlled the phylogenetic diversity of active methanotrophs and that differences in phylogenetic diversity between the bog and fen did not relate to measured CH4 oxidation rates. A single crenarchaeon in the bog site appeared to be assimilating 13C in 16S rDNA; however, its phylogenetic similarity to other CO2-utilizing archaea probably indicates that this organism is not directly involved in CH4 oxidation in peat.  相似文献   

18.
This study involved in vitro assays of peat soil to investigate the occurrence, importance and potential mechanism(s) of anaerobic methane oxidation (AOM) in several northern peatlands ranging from ombrotrophic bog to minerotrophic fen. Although strong evidence suggests that AOM is linked to sulfate reduction in marine sediments, very little is known about AOM in freshwater systems such as northern peatlands, which have large methane (CH 4 ) production and are a significant source of atmospheric CH 4 . Our results showed a mean net AOM rate of 17 ± 2.6 nmol kg ? 1 s ? 1 with a maximum rate of 176 nmol kg ? 1 s ? 1 for a minerotrophic fen in central New York. AOM was demonstrated with three independent methods to verify our results: (a) additions of methanogenic inhibitors, (b) stable isotope enrichment ( 13 C-CH 4 ), and (c) natural abundance stable isotope analysis ( 13 C-CH 4 ). These experiments confirmed that AOM occurs simultaneously with methanogenesis, consumes a significant portion of gross CH 4 production, and significantly fractionates C isotopes (~ ?127‰). Experiments using a variety of potential electron acceptors demonstrated that Fe(III) and SO4 2 ? are not quantitatively important, while the role of NO 3 ? is uncertain and deserves more attention. The exact mechanism(s) for AOM in peat soils remains unclear; however the AOM rates reported in this study are similar to those reported for CH 4 production and aerobic CH 4 oxidation in northern peatlands, suggesting that AOM may be an important control on CH 4 fluxes in northern peatland ecosystems.  相似文献   

19.
Vegetation, temperature and hydrology are major factors controlling wetland methane (CH4) dynamics. In order to test their importance, we measured CH4 emissions and environmental characteristics over 2 years from five mires representing a successional sequence, ranging in age from 178 to 2,520 years. We hypothesized CH4 emissions to be higher from the sedge-dominated fens than from the older bog stage. The more constant hydrological conditions at later successional stages as a consequence of the thicker peat layer appeared to result in lower temporal variation in CH4 emissions. Accordingly, the other controls, temperature and vegetation, had an effect on CH4 emissions only when the water table was sufficiently high. The seasonal variation in CH4 emissions was controlled by temperature only at the oldest study site, which had the lowest variation in water table. Within-season variation in emissions related to plant phenology was highest at the fen stage, which was dominated by aerenchymatous plants with a strong seasonal pattern, namely sedges and forbs. In contrast to our hypothesis, CH4 emissions increased with mire age towards the bog stage. However, the trend did not emerge during a rainy growing season, due to a rise in CH4 emissions at the younger stages. The results may imply two different mechanisms during mire succession: while old mires are able to avoid the perturbation associated with variation in the water table and maintain their function as CH4 emitters, young mires are exposed to perturbation but are able to recover their function.  相似文献   

20.
Under the warmer climate, predicted for the future, northern peatlands are expected to become drier. This drying will lower the water table and likely result in reduced emissions of methane (CH4) from these ecosystems. However, the prediction of declining CH4 fluxes does not consider the potential effects of ecological succession, particularly the invasion of sedges into currently wet sites (open water pools, low lawns). The goal of this study was to characterize the relationship between the presence of sedges in peatlands and CH4 efflux under natural conditions and under a climate change simulation (drained peatland). Methane fluxes, gross ecosystem production, and dissolved pore water CH4 concentrations were measured and a vegetation survey was conducted in a natural and drained peatland near St. Charles-de-Bellechasse, Quebec, Canada, in the summer of 2003. Each peatland also had plots where the sedges had been removed by clipping. Sedges were larger, more dominant, and more productive at the drained peatland site. The natural peatland had higher CH4 fluxes than the drained peatland, indicating that drainage was a significant control on CH4 flux. Methane flux was higher from plots with sedges than from plots where sedges had been removed at the natural peatland site, whereas the opposite case was observed at the drained peatland site. These results suggest that CH4 flux was enhanced by sedges at the natural peatland site and attenuated by sedges at the drained peatland site. However, the attenuation of CH4 flux due to sedges at the drained site was reduced in wetter periods. This finding suggests that CH4 flux could be decreased in the event of climate warming due to the greater depth to the water table, and that sedges colonizing these areas could further attenuate CH4 fluxes during dry periods. However, during wet periods, the sedges may cause CH4 fluxes to be higher than is currently predicted for climate change scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号