首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non‐native ambrosia beetles (Coleoptera: Curculionidae), especially Xylosandrus compactus (Eichhoff), Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford), are destructive wood‐boring pests of trees in ornamental nurseries and tree fruit orchards. Previous studies have demonstrated the adults are repelled by verbenone and strongly attracted to ethanol. We tested a “push–pull” semiochemical strategy in Ohio, Virginia and Mississippi using verbenone emitters to “push” beetles away from vulnerable trees and ethanol lures to “pull” them into annihilative traps. Container‐grown trees were flood‐stressed to induce ambrosia beetle attacks and then deployed in the presence or absence of verbenone emitters and a perimeter of ethanol‐baited interception traps to achieve the following treatment combinations: (a) untreated control, (b) verbenone only, (c) ethanol only, and (d) verbenone plus ethanol. Verbenone and ethanol did not interact to reduce attacks on the flooded trees, nor did verbenone alone reduce attacks. The ethanol‐baited traps intercepted enough beetles to reduce attacks on trees deployed in Virginia and Mississippi in 2016, but not in 2017, or in Ohio in 2016. Xylosandrus germanus, X. crassiusculus and both Hypothenemus dissimilis Zimmermann and X. crassiusculus were among the predominant species collected in ethanol‐baited traps deployed in Ohio, Virginia and Mississippi, respectively. Xylosandrus germanus and X. crassiusculus were also the predominant species dissected from trees deployed in Ohio and Virginia, respectively. While the ethanol‐baited traps showed promise for helping to protect trees by intercepting ambrosia beetles, the repellent “push” component (i.e., verbenone) and attractant “pull” component (i.e., ethanol) will need to be further optimized in order to implement a “push–pull” semiochemical strategy.  相似文献   

2.
Currently, techniques for managing western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae, Scolytinae), infestations are limited to tree removals (thinning) that reduce stand density and presumably host susceptibility, and/or the use of insecticides to protect individual trees. There continues to be significant interest in developing an effective semiochemical-based tool for protecting trees from D. brevicomis attack, largely as an alternative to conventional insecticides. The responses of D. brevicomis to tree volatiles and verbenone were documented in eight experiments (trapping assays) conducted over a 4-yr period in which 88,942 individuals were collected. Geraniol, a tree volatile unique to Pinus ponderosa that elicits female-specific antennal responses in D. brevicomis, did not affect D. brevicomis behavior. Blends of two green leaf alcohols [hexanol + (Z)-3-hexen-1-ol] tested at two release rates (5.0 and 100.0 mg/d) had no effect on the response of D. brevicomis to attractant-baited traps. A nine-component blend [benzaldehyde, benzyl alcohol, guaiacol, nonanal, salicylaldehyde, (E)-2-hexenal, (E)-2-hexen-1-ol, (Z)-2-hexen-1-ol, and (-) -verbenone; NAVV] and subsequent revisions of this blend disrupted the response of D. brevicomis to attractant-baited traps in all experiments. The inhibitory effect of a revised five-component blend [nonanal, (E)-2-hexenal, (E)-2-hexen-1-ol, (Z)-2-hexen-1-ol, and (-)-verbenone; NAVV5] on the response of mountain pine beetle, D. ponderosae Hopkins, to attractant-baited traps was also documented. Acetophenone significantly reduced D. brevicomis attraction, but was not as effective as verbenone alone. Acetophenone increased the effectiveness of NAVV5 in one of two experiments. Furthermore, by adding acetophenone to NAVV5 we were able to remove the aldehydes from NAVV5 without compromising effectiveness, resulting in a novel four-component blend [acetophenone, (E)-2-hexen-1-ol + (Z)-2-hexen-1-ol, and (-)-verbenone; Verbenone Plus]. We discuss the implications of these and other results to development of Verbenone Plus as a semiochemical-based tool for management of D. brevicomis and D. ponderosae infestations.  相似文献   

3.
4.
1 Seventeen non‐host angiosperm bark volatiles, seven of which are antennally active to Ips pini (Say), the pine engraver (PE), were tested for their ability to disrupt the response of the PE to pheromone‐baited traps. 2 Four green leaf volatiles (GLVs) were tested [1‐hexanol (Z)‐3‐hexen‐1‐ol, hexanal, and (E)‐2‐hexenal]. None had any disruptive effect singly, as a group or in all possible blends based on functional groups, despite the fact that the two aldehydes were antennally active. These compounds may have, in some instances, actually masked the disruptive effect of other compounds. The PE thus differs in its response from other Scolytidae, including other Ips spp. 3 Eight non‐host volatiles that were antennally active to other bark beetles, but not to PEs, had no disruptive effect, validating the use of coupled gas chromatographic‐electroantennographic detection analyses to detect compounds with potential behavioural activity. 4 The bicyclic spiroacetal conophthorin, (E)‐7‐methyl‐1,6‐dioxaspiro[4.5]decane, was disruptive when tested alone. When blends of two aldehydes [salicylaldehyde and nonanal] plus an alcohol and a phenol [benzyl alcohol and guaiacol] were combined with conophthorin, an enhanced disruptive effect was revealed. No single compound, other than conophthorin, disrupted the pheromone‐positive response and no blend that did not contain conophthorin was consistently disruptive to both sexes. Conophthorin seems to be a critical component in the non‐host angiosperm message for I. pini during its host selection phase. 5 Combination of the repellent synomones, verbenone and ipsenol, with the five disruptive non‐host volatiles may provide a potent treatment to protect trees, logs or stands from attack by the PE.  相似文献   

5.
6.
1 The western pine beetle Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae) is one of the most damaging insect pests of ponderosa pines Pinus ponderosa Douglas ex P. & C. Lawson in Western U.S.A. We compared the effect of verbenone, a well known bark beetle anti‐aggregation pheromone, with that of acetophenone on the attraction of D. brevicomis to its aggregation pheromone in a ponderosa pine forest in northern California. We tested the D. brevicomis aggregation pheromone alone and with three different release ratios of the aggregation pheromone (attractant) to verbenone or acetophenone (1 : 1, 1 : 2 and 1 : 5). 2 All treatments containing acetophenone or verbenone resulted in a significant reduction in the catch of D. brevicomis relative to the aggregation pheromone alone. When beetle responses to the three verbenone or three acetophenone treatments were pooled, the pooled verbenone treatment caught more D. brevicomis than the pooled acetophenone treatment. 3 There was no significant difference in the number of D. brevicomis caught among the three release rates of verbenone. By contrast, the 1 : 2 attractant : acetophenone ratio attracted significantly more D. brevicomis than the traps with the 1 : 5 attractant : acetophenone ratio. 4 Attraction of a major predator, Temnochila chlorodia (Mannerheim) (Coleoptera: Trogositidae), to the aggregation pheromone of D. brevicomis was reduced by verbenone, but not by acetophenone. Moreover, the T. chlorodia : D. brevicomis ratio for the pooled acetophenone treatment was 1.7‐fold greater than that for the attractant alone and two‐fold greater than the ratio for the pooled verbenone treatment, suggesting that acetophenone would not disrupt populations of this natural enemy. The importance of anti‐attractants in the biology of D. brevicomis and other bark beetles is discussed.  相似文献   

7.
Abstract 1 The attractiveness of potato plants treated with a synthetic host volatile blend [(Z)‐3‐hexenyl acetate (+/–)‐linalool, and methyl salicylate] to newly emerged and 5‐day‐old adult Colorado potato beetle, Leptinotarsa decemlineata (Say), was compared at four doses against untreated control plants and plants treated with an azadirachtin‐based antifeedant in greenhouse cage arenas. 2 Attractant‐treated plants (derived release rates of 0, 5.7, 17.1 or 57 µg/h) were significantly more attractive than untreated control plants to newly emerged and 5‐day‐old adults only at 57 µg/h. 3 Attractant‐treated plants were significantly more attractive than antifeedant‐treated plants to newly emerged and 5‐day‐old adults at the 5.7 µg/h treatment level and higher. Mean insect density on attractant‐treated plants in the attractant/antifeedant study was significantly higher than in the attractant/control study. 4 Habituation to the synthetic attractant was evaluated by exposing adult beetles to the synthetic attractant for 0, 1, 2.5, 4, 8, 12 or 16 h, before release into a wind tunnel in which an attractant‐baited plant model was placed at the upwind end. Insects exposed to the synthetic host attractant for ≤ 8 h moved to the synthetic attractant‐baited plant model whereas insects exposed to the synthetic host attractant for 12 and 16 h did not. Furthermore, beetles exposed to the synthetic attractant for 0 and 1 h moved at rates greater than, or equal to, the median whereas beetles exposed for longer time periods moved at rates significantly less than the median. 5 These results demonstrate the potential for using the synthetic plant attractant and an antifeedant as components in a stimulo‐deterrent strategy for management of the Colorado potato beetle as shown by us in another study.  相似文献   

8.
Field tests were performed on a golf course and in an apple orchard to screen synthetic plant volatiles with respect to their attractiveness for the garden chafer, Phyllopertha horticola L. (Coleoptera: Scarabaeidae), and to investigate the possible application of plant volatiles for garden chafer control. The chemicals tested were green leaf volatiles (GLV), terpenoids, and phenylpropanoids. Funnel traps baited with the GLV (Z)‐3‐hexen‐1‐ol, 1‐hexanol (Z)‐3‐hexenal, and hexanal captured more P. horticola than unbaited controls. Furthermore, traps baited with all tested floral terpenoids (i.e., geraniol, geranyl acetate, citronellol, linalool, and nerol) and phenylpropanoids (i.e., eugenol, anethol, isoeugenol, eugenyl acetate, and isoeugenyl acetate) captured more garden chafers than controls. Different dispenser types loaded once with a mixture of (Z)‐3‐hexen‐1‐ol (50%), geraniol (11.5%), eugenol (27%), and 2‐phenylethyl propionate (11.5%) attracted P. horticola over a whole flight season. A commercially available membrane dispenser had the best properties, combining the highest number of captured beetles with a low release rate. A simple modification of the trap design, i.e., a reduction of the funnel outlet diameter, significantly reduced the capture of beneficial non‐target insects (Apoidea), without influencing the number of captured garden chafers. A mass trapping experiment in the apple orchard revealed that the use of attractant traps significantly reduced the percentage of apples disfigured by feeding holes of adult garden chafers (control area: 18.9%, test area: 11.6%). The possible application of synthetic plant volatiles in mass trapping and monitoring approaches for garden chafer control is discussed.  相似文献   

9.
As a result of field tests in Bulgaria and Hungary, cis‐2‐isopropenyl‐l‐methylcyclobutane ethanol (racemic grandisol) is reported for the first time as an attractant for Bothynoderes affinis (Schrank) (Coleoptera: Curculionidae, Lixinae), a member of the pest weevil complex of sugar beet. Dose–response experiments in the field using Csalomon TAL (modified pitfall) traps (Plant Protection Institute, CAR HAS, Budapest, Hungary) showed that catches of B. affinis adults increased with increasing attractant dose. In a subsequent experiment studying the effect of trap color (white, blue, yellow, fluorescent yellow, and transparent) all traps with the lure caught more than non‐baited control traps, and the highest number of adults was recorded in transparent and yellow baited traps. Trap color had a significant effect on the number of B. affinis females captured. Transparent TAL traps baited with 1–10 mg grandisol applied on rubber dispensers are recommended for the detection and monitoring of B. affinis. In addition to the target species, 17 other Lixinae species were captured during the field experiments, demonstrating for the first time the possible role of grandisol in the chemical communication systems of some of these species. A second locality of Lixus punctiventris Boheman (Lixinae, Lixini) in Bulgaria is reported. TAL traps baited with grandisol might be a useful tool for surveying Lixinae diversity in different biotopes.  相似文献   

10.
Twig beetle Pityophthorus pubescens (Coleoptera: Curculionidae: Scolytinae) has been previously associated with the Fusarium circinatum (Hypocreales: Nectriaceae), the pathogen causing pitch canker disease, in P. radiata stands of the Basque Country (Northern Spain). Laboratory and field studies were conducted to evaluate the response of the insect to the racemic mixture of the spiroacetal trans‐7‐methyl‐1,6‐dioxaspiro[4.5]decane, also known as conophthorin. In walking bioassays, addition of 10 and 100 ng of racemic trans‐conophthorin to 1 ng of (±)‐trans‐pityol elicited a negative response in males, whereas females did not show any significant preference. Catches of males in attractant‐baited traps were strongly reduced by racemic trans‐conophthorin at all release rates tested (0.5, 1.0, 1.5 and 2.0 mg/day). In contrast, catches of females were not affected by any of the (±)‐trans‐conophthorin release rate.  相似文献   

11.
The southern pine beetle (Dendroctonus frontalis) and western pine beetle (Dendroctonus brevicomis) cause significant mortality to pines in the southern and western United States. The effectiveness of commercial lures at capturing these bark beetles in Arizona has not been tested and may vary from other regions of their distribution. We conducted experiments using baited Lindgren funnel traps to investigate (i) if D. frontalis is more attracted to the standard commercial lure for D. brevicomis (frontalin + exo‐brevicomin + myrcene) than the D. frontalis lure (frontalin + terpene blend), (ii) whether replacement of myrcene with α‐pinene changes trap catches of Dendroctonus and associated insects, and (iii) whether the attraction to these lures varies across the geographical range of ponderosa pine forests throughout Arizona. In 2005, we tested various combinations of frontalin, exo‐brevicomin, myrcene and α‐pinene to D. frontalis, D. brevicomis and associated species. Dendroctonus frontalis, D. brevicomis and the predator Temnochila chlorodia were most attracted to lures with exo‐brevicomin. The replacement of the myrcene component with α‐pinene in the D. brevicomis lure resulted in the capture of twice as many bark beetles and Elacatis beetles. However, T. chlorodia did not differentiate between monoterpenes. In 2006, traps were set up in 11 locations around Arizona to test the relative attraction of lure combinations. In 9 out 11 locations, the D. brevicomis lure with α‐pinene was more attractive than the lure with myrcene or a terpene blend. These results suggest that the D. brevicomis lure with α‐pinene rather than myrcene is more effective lure to capture D. brevicomis and D. frontalis in Arizona. However, geographical variation in attractiveness to lures is evident even within this region of the beetles’ distributions. Differential attraction of Dendroctonus and their predators to these lures suggests potential use in field trapping and control programmes.  相似文献   

12.
Abstract The application aspects of chemicals which attract the forest cockchafer, Melolontha hippocastani F., were investigated in field and laboratory experiments. Previous studies have shown that males of M. hippocastani are attracted by a synthetic mixture of green leaf volatiles (GLV) and the sex pheromone 1,4‐benzoquinone (BQ), that synergistically enhances the male response to GLV. In the present study, we demonstrated that BQ also synergised the male response to one single component of the GLV mixture, the leaf alcohol (Z)‐3‐hexen‐1‐ol (Z‐3‐ol). BQ enhanced the attractiveness of Z‐3‐ol at doses between 0.05 and 5 mg per trap, reaching a maximum at 5 × 10?1 mg day?1. The addition of an insecticide (cyhalothrin) to traps baited with BQ and Z‐3‐ol did not affect the lures’ attractiveness. However, when a conidiospore formulation of the entomopathogenic fungus Beauveria brongniartii (Saccardo) Petch was added, the attractiveness of baited traps was significantly reduced. Furthermore, two types of dispensers baited with a solution of BQ in Z‐3‐ol at 20 mg ml?1 were tested over the entire 4‐week flight season. Both a membrane dispenser and a dispenser based on a porous polyethylene (PPE) absorbent disk attracted more males than controls over the entire 4 weeks. The membrane dispenser attracted as many males each week as a reference formulation that was renewed daily. Furthermore, the membrane dispenser attracted more males than the PPE dispenser in weeks 2–4, although laboratory experiments showed that the latter released even higher or at least equal amounts of the joined lure over the entire 4 weeks. However, estimation of the BQ/Z‐3‐ol ratios of the released material by solid phase microextraction (SPME) and coupled gas chromatography–mass spectrometry (GC‐MS) revealed that the membrane dispenser released a higher proportion of BQ than the PPE dispenser in weeks 2–4. Therefore, a higher BQ/Z‐3‐ol ratio might be responsible for the advantage of the membrane dispenser in the field.  相似文献   

13.
1. Swarming males of Melolontha hippocastani are known to locate females that stay feeding within the host trees by orienting towards damage‐induced plant volatiles (green leaf volatiles) and a sex pheromone. Thus, volatiles emitted by freshly damaged leaves might indicate to a male the presence of currently feeding females. 2. The hypothesis was studied that volatiles from freshly damaged leaves are more attractive to males than volatiles from old damaged leaves. The odour bouquets of damaged leaves from three plant species that have been shown to attract male M. hippocastani in the field were analysed 10 min (fresh damage) and 1.5 h (old damage) after damaging, using coupled gas chromatography–mass spectrometry. The results showed clear differences between the bouquets: the bouquet of freshly damaged leaves of all species consisted of typical leaf aldehydes, i.e. hexanal, (Z)‐3‐hexenal, (Z)‐2‐hexenal, (E)‐2‐hexenal, the leaf alcohol (Z)‐3‐hexen‐1‐ol, and the corresponding acetate. One and a half hours after damage, aldehydes had almost vanished and (Z)‐3‐hexen‐1‐ol and (Z)‐3‐hexenyl acetate predominated; however males of M. hippocastani were equally attracted to traps baited with volatiles from old and freshly damaged leaves in field experiments. When traps were baited with synthetic volatile mixtures mimicking the bouquets of old and freshly damaged leaves, M. hippocastani males even preferred the old damage mixture. 3. Experiments addressing the role of individual green leaf volatiles revealed that only (Z)‐3‐hexen‐1‐ol was highly attractive while the other compounds tested individually were behaviourally inactive, however all tested compounds elicited comparable electrophysiological responses on male M. hippocastani antennae. 4. In analogy to the term aggregation kairomone used for feeding‐induced plant volatiles that attract both sexes of an insect, the term sexual kairomone is suggested to describe the novel function of (Z)‐3‐hexen‐1‐ol in the sexual communication of M. hippocastani.  相似文献   

14.
Abstract The tea green leafhopper, Empoasca vitis Göthe, is one of the most serious insect pests of tea plantations in mainland China. Over the past decades, this pest has been controlled mainly by spraying pesticides. Insecticide applications not only have become less effective in controlling damage, but even more seriously, have caused high levels of toxic residues in teas, which ultimately threatens human health. Therefore, we should seek a safer biological control approach. In the present study, key components of tea shoot volatiles were identified and behaviorally tested as potential leafhopper attractants. The following 13 volatile compounds were identified from aeration samples of tea shoots using gas chromatography‐mass spectrometry (GC‐MS): (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexenyl acetate, 2‐ethyl‐1‐hexanol, (E)‐ocimene, linalool, nonanol, (Z)‐butanoic acid, 3‐hexenyl ester, decanal, tetradecane, β‐caryophyllene, geraniol and hexadecane. In Y‐tube olfactometer tests, the following individual compounds were identified: (E)‐2‐hexenal, (E)‐ocimene, (Z)‐3‐hexenyl acetate and linalool, as well as two synthetic mixtures (called blend 1 and blend 2) elicited significant taxis, with blend 2 being the most attractive. Blend 1 included linalool, (Z)‐3‐hexen‐1‐ol and (E)‐2‐hexenal at a 1 : 1 : 1 ratio, whereas blend 2 was a mixture of eight compounds at the same loading ratio: (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexenyl acetate, 2‐penten‐1‐ol, (E)‐2‐pentenal, pentanol, hexanol and 1‐penten‐3‐ol. In tea fields, the bud‐green sticky board traps baited with blend 2, (E)‐2‐hexenal or hexane captured adults and nymphs of the leafhoppers, with blend 2 being the most attractive, followed by (E)‐2‐hexenal and hexane. Placing sticky traps baited with blend 2 or (E)‐2‐hexenal in the tea fields significantly reduced leafhopper populations. Our results indicate that the bud‐green sticky traps baited with tea shoot volatiles can provide a new tool for monitoring and managing the tea leafhopper.  相似文献   

15.
Olfactory deterrents have been proposed as tree protectants against attack by bark beetles, but their development has been hindered by a lack of knowledge of host selection behavior. Among the primary tree-killing (aggressive) Dendroctonus, vision appears to be an integral part of the host selection process. We evaluated the importance of vision in host finding by D. brevicomis LeConte, and our ability to affect it by modifying the visual stimulus provided by attractant-baited multiple-funnel traps. White-painted traps caught 42% fewer D. brevicomis than black traps in California, USA (P < 0.05). Visual treatments were less effective (P < 0.0001) than olfactory disruptants (verbenone with ipsdienol), which reduced catch by about 78%. When combined, olfactory and visual disruptants resulted in 89% fewer D. brevicomis being caught, but this combination was not more effective than olfactory disruptants alone (P > 0.05). Our results demonstrate that the visual component of D. brevicomis host finding behavior can be manipulated, but that D. brevicomis may be more affected by olfactory than visual disruptants. In contrast, visual disruption is more pronounced in the southern pine beetle, Dendroctonus frontalis Zimmermann, suggesting that non-insecticidal tree protection strategies for these related species should differ.  相似文献   

16.
Blends of volatile compounds emitted by host plants are known to mediate the attraction of gravid female herbivores to oviposition sites, but the role of individual odor components is still little understood. We characterized the olfactory response of mated female Cydia (Grapholita) molesta (Busck) (Lepidoptera: Tortricidae) to synthetic mixtures of compounds emitted by peach shoot, a key host plant of this herbivore, and investigated the role of important constituents of bioactive mixtures in moth attraction. Relative ratios of constituents of the mixtures corresponded to the natural ratio of volatile compounds collected in the plant's headspace. A significant attractant effect was found for a comparatively complex 10‐compound mixture that included four green leaf volatiles [(Z)‐3‐hexen‐1‐ol, 1‐hexanol, (E)‐2‐hexenal, and (Z)‐3‐hexen‐1‐yl acetate], five aromatics (benzaldehyde, methyl salicylate, methyl benzoate, benzonitrile, and phenylacetonitrile), and a carboxylic acid (valeric acid). Using a subtraction approach, the number of compounds was progressively decreased, resulting in a bioactive 5‐compound mixture composed of two constituents, green leaf volatiles and aromatic compounds. Further evaluations revealed that benzaldehyde and benzonitrile must be present in association with three distinct green leaf volatiles to produce an attractant effect on the female moths. This 5‐compound mixture was as attractive as natural peach shoot volatiles, which are known to comprise over 20 compounds. Results are discussed in light of the documented synergistic effect between the three general green leaf volatiles and the two specific aromatic compounds.  相似文献   

17.
Abstract 1 The attractiveness of pitfall traps baited with a synthetic host volatile attractant to colonizing adult Colorado potato beetle, Leptinotarsa decemlineata (Say) was evaluated in a field setting. 2 Significantly more postdiapause, colonizing adult L. decemlineata were captured in baited than unbaited pitfall traps. 3 The potential for this synthetic kairomone to enhance the efficacy of trap cropping as a management tool was evaluated by comparing conventionally managed plots with like‐sized plots bordered by either attractant‐treated trap crop or untreated trap crop. 4 More postdiapause, colonizing adults, egg masses and small larvae were present in attractant‐treated trap crops than in untreated trap crops. 5 There were no significant differences in egg mass and small larvae densities between plots bordered by attractant‐treated trap crops and conventionally managed plots, but there were significantly fewer large larvae and adult beetles in conventionally managed plots. 6 Plant canopy area of conventionally managed plots was significantly greater than in plots bordered by either type of trap crop. 7 Yields for conventionally managed plots and plots bordered by attractant‐treated trap crops did not differ, and less insecticide (44%) was applied to plots bordered by attractant‐treated trap crops.  相似文献   

18.
To improve the efficiency of the known floral attractant of Cetonia aurata aurata and Potosia cuprea [3‐methyl eugenol, 1‐phenylethanol and (E)anethol] electroantennographic tests were conducted using the antennae of both species. Among synthetic floral compounds eliciting the highest responses from the antennae, geraniol, (±)‐lavandulol and ß‐ionone, were chosen for field experiments. In field trapping tests in Hungary the addition of (±)‐lavandulol to the known attractant resulted in significantly higher catches of both scarabs than the ternary blend alone or the single compounds. Only geraniol resulted in higher catches of P. cuprea when added to the ternary attractant. The addition of ß‐ionone to the known attractant decreased catches. In further tests the addition of geraniol in the same single dispenser as the known ternary mixture plus (±)‐lavandulol did not increase catches of C. a. aurata and P. cuprea. The improved bait consisting of 3‐methyl eugenol/1‐phenylethanol/(E)anethol/(±)‐lavandulol described in this study is recommended for use in trapping of C. a. aurata and P. cuprea for agricultural purposes.  相似文献   

19.
20.
A comparison of nine commercial baited fly traps on Florida dairy farms demonstrated that Terminator traps collected significantly more (13,323/trap) house flies (Musca domestica L.) than the others tested. Final Flight, Fly Magnet, and FliesBeGone traps collected intermediate numbers of flies (834‐2,166), and relatively few were caught with ISCA, Advantage, Fermone Big Boy, Squeeze & Snap, or OakStump traps (<300). Terminator traps collected about twice as many flies (799.8/trap) as FliesBeGone traps (343.8) when each trap was baited with its respective attractant, but when the attractants were switched between the two trap types, collections were significantly lower (77‐108) than was observed with traps baited with their respective attractant. Solutions of molasses were significantly more attractive to house flies than honey, maple syrup, or jaggery (date palm sugar). Field‐expedient traps constructed from discarded PET water bottles were much less effective than commercial traps, but painting the tops of such traps with black spray paint resulted in a six‐fold increase in trap capture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号