首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four independent genes encoding various variants of the hRPB11 subunit of Homo sapiens RNA polymerase II were revealed in human chromosome 7. Three genes (POLR2J1, POLR2J2, and POLR2J3) form a cluster of total length 214530 bp in the genetic locus 7q22.1 on the long arm of chromosome 7 (contig NT_007933). The fourth gene (POLR2J4, 31040 bp) was localized in the cytogenetic locus 7p13 of the short arm of chromosome 7 (contig NT_007819). An analysis enabled us to refine dissimilar experimental data on the mapping of the hRPB11 subunit gene on chromosome 7. In particular, the presence of three sites of its localization according to data on hybridization with fluorescent-labeled probes (the FISH method) was explained. It was established that, upon the expression of the four human POLR2J genes, at least 14 types of mature mRNAs encoding somewhat differing hRPB11 isoforms can be synthesized. Eleven of these mRNAs were revealed (as full-length copies or clearly identifiable fragments) in the available databases of expressed sequence tags and cDNAs. The most probable scheme of origination of the multiple genes of the POLR2J family, as a result of three consecutive segmented duplications increasing in size, was proposed and substantiated. On the basis of the scheme, some assumptions on the pathways of evolution of separate human genes and the mechanisms of generation of protein diversity in higher eukaryotes were made. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 6; see also http://www.maik.ru.  相似文献   

2.
Four independent genes encoding various variants of the hRPB11 subunit of Homo sapiens RNA polymerase II were revealed in human chromosome 7. Three genes (POLR2 J1, POLR2 J2, and POLR2 J3) form a cluster of total length of 214 530 bp in the genetic locus 7q22.1 on the long arm of chromosome 7 (contig NT_007933). The fourth gene (POLR2 J4, 31 040 bp) was localized in the cytogenetic locus 7p13 of the short arm of chromosome 7 (contig NT_007819). An analysis enabled us to refine dissimilar experimental data on the mapping of the hRPB11 subunit gene on chromosome 7. In particular, the presence of three sites of its localization according to data on hybridization with fluorescent-labeled probes (the FISH method) was explained. It was established that, upon the expression of the four human POLR2 J genes, at least 14 types of mature mRNAs encoding somewhat differing hRPB11 isoforms can be synthesized. Eleven of these mRNAs were revealed (as full-length copies or clearly identifiable fragments) in the available databases of expressed sequence tags and cDNAs. The most probable scheme of origination of the multiple genes of the POLR2 J family as a result of three consecutive segmented duplications increasing in size was proposed and substantiated. On the basis of the scheme, some assumptions on the pathways of evolution of separate human genes and the mechanisms of generation of protein diversity in higher eukaryotes were made.  相似文献   

3.
4.
5.
The structure of the gene encoding the 14.5 kDa subunit of the human RNA polymerase II (or B) has been elucidated. The gene consists of six exons, ranging from 52 to over 101 bp, interspaced with five introns ranging from 84 to 246 bp. It is transcribed into three major RNA species, present at low abundance in exponentially growing HeLa cells. The corresponding messenger RNAs contain the same open reading frame encoding a 125 amino acid residue protein, with a calculated molecular weight of 14,523 Da. This protein (named hRPB14.5) shares strong homologies with the homologous polymerase subunits encoded by the Drosophila (RpII15) and yeast (RPB9) genes. Cysteines characteristic of two zinc fingers are conserved in all three corresponding sequences and, like the yeast protein, the hRPB14.5 subunit exhibits zinc-binding activity.  相似文献   

6.
As an approach to elucidating the rules governing the assembly of human RNA polymerase II (hRPB), interactions between its subunits have been systematically analyzed. Eleven of the 12 expected hRPB subunits have previously been tested for reciprocal interactions (J. Biol. Chem. 272 (1997) 16815-16821). We now report the results obtained for the last subunit (hRPB4; Mol. Cell. Biol. 18 (1998) 1935-1945) and propose an essentially complete picture of the potential interactions occurring within hRPB. Finally, complementation experiments in yeast indicated that hRPB4 expression efficiently cured both heat and cold-sensitivity of RPB4-lacking strains, supporting the existence of conserved functional subunit interactions.  相似文献   

7.
We have cloned and sequenced a cDNA of 1766 base pairs in length encoding the 275 amino acids of hRPB 33, the third largest subunit of human RNA polymerase II. The DNA was isolated by screening of a human lambda gt11 cDNA library with oligonucleotides designed on the basis of the amino acid residue analysis of the bovine material. The hRPB 33 amino acid sequence is highly conserved between Saccharomyces cerevisiae and human. Overall, 45% of the amino acid residues are identical with the yeast homologue RPB 3, and 65% of the amino acids are identical in the two major conserved regions at residues 0-103 and 151-197. hRPB 33 is also homologous to yeast RPC 5. The amino acid sequence of hRPB 33 showed no obvious homology with bacterial RNA polymerase or with any of its sigma factors.  相似文献   

8.
9.
We have previously cloned the human RNA polymerase II subunit 11, as a doxorubicin sensitive gene product. We suggested multiple tasks for this subunit, including structural and regulatory roles. With the aim to clarify the human RNA polymerase II subunit 11 function, we have identified its interacting protein partners using the yeast two-hybrid system. Here, we show that human RNA polymerase II subunit 11 specifically binds keratin 19, a component of the intermediate filament protein family, which is expressed in a tissue and differentiation-specific manner. In particular, keratin 19 is a part of the nuclear matrix intermediate filaments. We provide evidence that human RNA polymerase II subunit 11 interacts with keratin 19 via its N-terminal alpha motif, the same motif necessary for its interaction with the human RNA polymerase II core subunit 3. We found that keratin 19 contains two putative leucine zipper domains sharing peculiar homology with the alpha motif of human RNA polymerase II subunit 3. Finally, we demonstrate that keratin 19 can compete for binding human RNA polymerase II subunit 11/human RNA polymerase II subunit 3 in vitro, suggesting a possible regulatory role for this molecule in RNA polymerase II assembly/activity.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号