首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated an impact of the BRAF inhibitor vemurafenib on patient lymphocyte counts. In the current study, the extent to which concomitant use of corticosteroids in BRAF inhibitor treated patients affects lymphocyte counts and predisposes to infection was investigated. A cohort of 102 patients receiving either the selective BRAF inhibitor vemurafenib or dabrafenib was analyzed. The amount of patients receiving either medication with or without systemic corticosteroids (dexamethasone) was determined and lymphocyte counts before and under therapy assessed. Additionally, the number and severity of infections occurring in these groups was analyzed. Vemurafenib treatment led to a considerable decrease in lymphocyte cell counts, with 62.3% of patients having lymphopenia. Dabrafenib treated patients only rarely demonstrated lymphopenia (12.5%). Dexamethasone co-administration further diminished lymphocyte counts. Lymphopenias were observed in 84.6% of patients receiving vemurafenib and dexamethasone. In our cohort, infections were noted in 9 patients, 4 of these were severe and 2 eventually fatal. All 9 cases with infections demonstrated lymphopenia, 8 of these had received dexamethasone and 7 of these a therapy with vemurafenib. Our findings demonstrate a significant lymphopenia in patients treated with the BRAF inhibitor vemurafenib, which is further augmented by dexamethasone and predisposes to infection. If validated in other studies, risk of infection should be considered when applying corticosteroids in combination with BRAF inhibitors, in particular vemurafenib.  相似文献   

2.
Although targeting the V600E activating mutation in the BRAF gene, the most common genetic abnormality in melanoma, has shown clinical efficacy in melanoma patients, response is, invariably, short lived. To better understand mechanisms underlying this acquisition of resistance to BRAF-targeted therapy in previously responsive melanomas, we induced vemurafenib resistance in two V600E BRAF+ve melanoma cell lines, A375 and DM443, by serial in vitro vemurafenib exposure. The resulting approximately 10-fold more vemurafenib-resistant cell lines, A375rVem and D443rVem, had higher growth rates and showed differential collateral resistance to cisplatin, melphalan, and temozolomide. The acquisition of vemurafenib resistance was associated with significantly increased NRAS levels in A375rVem and D443rVem, increased activation of the prosurvival protein, AKT, and the MAPKs, ERK, JNK, and P38, which correlated with decreased levels of the MAPK inhibitor protein, GSTP1. Despite the increased NRAS, whole exome sequencing showed no NRAS gene mutations. Inhibition of all three MAPKs and siRNA-mediated NRAS suppression both reversed vemurafenib resistance significantly in A375rVem and DM443rVem. Together, the results indicate a mechanism of acquired vemurafenib resistance in V600E BRAF+ve melanoma cells that involves increased activation of all three human MAPKs and the PI3K pathway, as well as increased NRAS expression, which, contrary to previous reports, was not associated with mutations in the NRAS gene. The data highlight the complexity of the acquired vemurafenib resistance phenotype and the challenge of optimizing BRAF-targeted therapy in this disease. They also suggest that targeting the MAPKs and/or NRAS may provide a strategy to mitigate such resistance in V600E BRAF+ve melanoma.  相似文献   

3.
Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a new regulatory element in this intron that confers cell-type-specific inclusion of an unrelated exon that mirrors its ability to promote cell-type-specific inclusion of exon IIIb. This element promoted inclusion of exon IIIb while at the same time silencing exon IIIc inclusion in cells expressing FGFR2-IIIb; hence, we have termed this element ISE/ISS-3 (for "intronic splicing enhancer-intronic splicing silencer 3"). Silencing of exon IIIc splicing by ISE/ISS-3 was shown to require a branch point sequence (BPS) using G as the primary branch nucleotide. Replacing a consensus BPS with A as the primary branch nucleotide resulted in constitutive splicing of exon IIIc. Our results suggest that the branch point sequence constitutes an important component that can contribute to the efficiency of exon definition of alternatively spliced cassette exons. Noncanonical branch points may thus facilitate cell-type-specific silencing of regulated exons by flanking cis elements.  相似文献   

4.
5.
An intermediate stage in the process of eukaryotic RNA splicing is the formation of a lariat structure. It is anchored at an adenosine residue in intron between 10 and 50 nucleotides upstream of the 3' splice site. A short conserved sequence (the branch point sequence) functions as the recognition signal for the site of lariat formation. It has been generally assumed that the branch point is recognized mainly by the presence of its unique sequence where the lariat is formed. However, the known branch point consensus sequence is found to be distributed nearly randomly throughout the gene sequence with only a slightly higher frequency in the expected lariat region. Further, the known consensus sequence is found to be clearly inadequate to specify branch points. These observations have implications for understanding the mechanism of branch point recognition in the process of splicing, and the possible evolution of the branch point signal.  相似文献   

6.
We investigated the interaction of U2 snRNP with the branch-3' splice site region of three human beta-globin pre-mRNAs carrying nearly complete (BamHI RNA), 24 nt (Avall RNA) and 14 nt (Accl RNA) of exon 2. All supported splicing, but mRNAs yields were respectively 2 and 10 times lower for Avall and Accl RNAs than for BamHI. Analysis of RNase T1-resistant fragments immunoprecipitated by an anti-(U2)RNP antibody at early times of the splicing reaction showed that the protection encompasses both the branch point region and the end of the intron in BamHI and Avall, but essentially only the branch point in Accl RNAs. Later on, this protection becomes less detectable in BamHI, is reinforced in Avall and remains poorly detectable in Accl RNAs. Similar experiments performed at late times with an anti-Sm antibody recognizing all snRNPs showed that the end of the intron is protected in all but BamHI RNAs. These results support the conclusion that U2 snRNP binds to a fully efficient precursor (BamHI RNA) through another factor(s) recognizing the 3' splice site (U5 snRNP and the so-called U2AF protein are likely candidates). Either the absence of an initial contact between U2 snRNP and the factor(s) recognizing the end of the intron (Accl RNA) or the unability of this ternary complex to undergo a conformational change (Avall RNA) could render these severely truncated precursors poor substrates. These different situations have consequences on the branch point selection itself. BamHI and Avall RNAs use three functional branch points at early times, the usual A residue at -37 and two U residues at -17 and -22. Accl RNA uses only one branch point at -37. Later on, all three branch points are used at the same rate in Avall, while the usual one prevails in BamHI RNAs.  相似文献   

7.
A J Newman  R J Lin  S C Cheng  J Abelson 《Cell》1985,42(1):335-344
We have altered the TACTAAC sequence in the yeast CYH2m gene intron to TACTACC. This mutation changes the nucleotide at the normal position of the branch in intron RNA lariats produced during pre-mRNA splicing, and it prevents splicing in vivo. In a yeast pre-mRNA splicing system, CYH2m pre-mRNA carrying the TACTACC mutation is not specifically cut or rearranged in any way. Substitution of an A for the first G of the CYH2m intron, converting the highly conserved GTATGT 5' splice site sequence to ATATGT, also blocks intron excision in vivo and in vitro: pre-mRNA carrying this mutation was still cut normally at the mutant 5' splice site in vitro, to give authentic exon 1 and an intron-exon 2 lariat RNA with an A-A 2'-5' phosphodiester linkage at the branch point. This lariat RNA is a dead-end product. The subsequent cleavage at the 3' splice site is therefore sensitive to the sequence of the 5' end of the intron attached at the branch point.  相似文献   

8.
B Ruskin  J M Greene  M R Green 《Cell》1985,41(3):833-844
The excised introns of pre-mRNAs and intron-containing splicing intermediates are in a lariat configuration in which the 5' end of the intron is linked by a 2'-5' phosphodiester bond (RNA branch) to a single adenosine residue near the 3' end of the intron. To determine the role of the specific sequence surrounding the RNA branch, we have mutated the branch point sequence of the human beta-globin IVS1. Pre-mRNAs lacking the authentic branch point sequence are accurately spliced in vitro; processing of the mutant pre-mRNAs generates RNA lariats due to the activation of cryptic branch points within IVS1. The cryptic branch points always occur at adenosine residues, but the sequences surrounding the branched nucleotide vary. Regardless of the type of mutation or the sequences remaining within IVS1, the cryptic branch points are 22 to 37 nucleotides upstream of the 3' splice site. These results suggest that RNA branch point selection is primarily based on a mechanism that measures the distance from the 3' splice site.  相似文献   

9.

Background

The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway.

Methodology/Principal Findings

The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance.

Conclusions/Significance

Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors.  相似文献   

10.
11.
Human papillomavirus 18(HPV18) E6 and E7 oncogenes are transcribed as a single bicistronic E6 E7 pre-mRNA. The E6 ORF region in the bicistronic E6 E7 pre-mRNA contains an intron. Splicing of this intron disrupts the E6 ORF integrity and produces a spliced E6~*I RNA for efficient E7 translation. Here we report that the E6 intron has two overlapped branch point sequences(BPS) upstream of its 30 splice site, with an identical heptamer AACUA■C, for E6~*I splicing. One heptamer has a branch site adenosine(underlined) at nt 384 and the other at nt 388. E6~*I splicing efficiency correlates to the expression level of E6 and E7 proteins and depends on the selection of which branch site. In general, E6~*I splicing prefers the 30 ss-proximal branch site at nt 388 over the distal branch site at nt 384. Inactivation of the nt 388 branch site was found to activate a cryptic acceptor site at nt 636 for aberrant RNA splicing. Together, these data suggest that HPV18 modulates its production ratio of E6 and E7 proteins by alternative selection of the two mapped branch sites for the E6~*I splicing, which could be beneficial in its productive or oncogenic infection according to the host cell environment.  相似文献   

12.
V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) mutated lung cancer is relatively aggressive and is resistant to currently available therapies. In a recent phase II study for patients with BRAF-V600E non-small cell lung cancer (NSCLC), BRAF V600E inhibitor demonstrated evidence of activity, but 30% of this selected group progressed while on treatment, suggesting a need for developing alternative strategies. We tested two different options to enhance the efficacy of vemurafenib (BRAF V600E inhibitor) in BRAF mutated NSCLC. The first option was the addition of erlotinib to vemurafenib to see whether the combination provided synergy. The second was to induce MEK inhibition (downstream of RAF) with trametinib (MEK inhibitor). We found that the combination of vemurafenib and erlotinib was not synergistic to the inhibition of p-ERK signaling in BRAF-V600E cells. Vemurafenib caused significant apoptosis, G1 arrest and upregulation of BIM in BRAF-V600 cells. Trametinib was effective as a single agent in BRAF mutated cells, either V600E or non-V600E. Finally, the combination of vemurafenib and trametinib caused a small but significant increase in apoptosis as well as a significant upregulation of BIM when compared to either single agent. Thus, hinting at the possibility of utilizing a combinational approach for the management of this group of patients. Importantly, trametinib alone caused upregulation of p-AKT in BRAF non-V600 mutated cells, while this effect was nullified with the combination. This finding suggests that, the combination of a MEK inhibitor with a BRAF inhibitor will be more efficacious in the clinical setting for patients with BRAF mutated NSCLC.  相似文献   

13.
The problem of intron recognition in S. cerevisiae appears to be in part solved by the strong conservation of intron encoded splicing signals, in particular the 5' GUAUGU and the branch point UACUAAC which interact via base pairing with the RNA components of U1 and U2 snRNPs respectively. Nevertheless, the mere presence of such signals is insufficient for splicing to occur. In the S. cerevisiae ACT1 intron, a silent UACUAAC-like sequence (UACUAAG) is located 7 nucleotides upstream of the canonical branch point signal. In order to investigate whether other factors, in addition to the U2-UACUAAC base-pair interactions, affect branch point selection in yeast, we created a cis-competition assay by converting the UACUAAG to a strong branch point signal (UACUAAC). If simply having a canonical UACUAAC sequence were sufficient for lariat formation, a 1:1 ratio in usage of the two signals should have been observed. In this double branch point intron, however, the downstream UACUAAC is utilized preferentially (4:1). Results obtained from the analyses of numerous sequence variants flanking the two UACUAAC sequences, demonstrate that non-conserved sequences in the branch point region are able to define lariat formation. Consequently, we conclude that U2 base-pairing is not the only requirement determining branch point selection in yeast, and local structure in the vicinity of the branch point could play a critical role in its recognition.  相似文献   

14.
Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.  相似文献   

15.
BRAF is the most prevalent oncogene and an important therapeutic target in melanoma. In some cancers, BRAF is activated by rearrangements that fuse its kinase domain to 5′ partner genes. We examined 848 comparative genomic hybridization profiles of melanocytic tumors and found copy number transitions within BRAF in 10 tumors, of which six could be further characterized by sequencing. In all, the BRAF kinase domain was fused in‐frame to six N‐terminal partners. No other mutations were identified in melanoma oncogenes. One of the seven melanoma cell lines without known oncogenic mutations harbored a similar BRAF fusion, which constitutively activated the MAP kinase pathway. Sorafenib, but not vemurafenib, could block MAP kinase pathway activation and proliferation of the cell line at clinically relevant concentrations, whereas BRAFV600E mutant melanoma cell lines were significantly more sensitive to vemurafenib. The patient from whom the cell line was derived showed a durable clinical response to sorafenib.  相似文献   

16.
Here, we retrospectively review imaging of 68 consecutive unselected patients with BRAF V600‐mutant metastatic melanoma for organ‐specific response and progression on vemurafenib. Complete or partial responses were less often seen in the central nervous system (CNS) (36%) and bone (16%) compared to lung (89%), subcutaneous (83%), spleen (71%), liver (85%) and lymph nodes/soft tissue (83%), P < 0.001. CNS was also the most common site of progression. Based on this, we tested in vitro the efficacy of the BRAF inhibitors PLX4720 and dabrafenib in the presence of cerebrospinal fluid (CSF). Exogenous CSF dramatically reduced cell death in response to both BRAF inhibitors. Effective cell killing was restored by co‐administration of a PI‐3 kinase inhibitor. We conclude that the efficacy of vemurafenib is variable in different organs with CNS being particularly prone to resistance. Extrinsic factors, such as ERK‐ and PI3K‐activating factors in CSF, may mediate BRAF inhibitor resistance in the CNS.  相似文献   

17.
The use of the BRAF inhibitor vemurafenib exhibits drug resistance in the treatment of thyroid cancer (TC), and finding more effective multitarget combination therapies may be an important solution. In the present study, we found strong correlations between Ref-1 high expression and BRAF mutation, lymph node metastasis, and TNM stage. The oxidative stress environment induced by structural activation of BRAF upregulates the expression of Ref-1, which caused intrinsic resistance of PTC to vemurafenib. Combination inhibition of the Ref-1 redox function and BRAF could enhance the antitumor effects of vemurafenib, which was achieved by blocking the action of Ref-1 on BRAF proteins. Furthermore, combination treatment could cause an overload of autophagic flux via excessive AMPK protein activation, causing cell senescence and cell death in vitro. And combined administration of Ref-1 and vemurafenib in vivo suppressed PTC cell growth and metastasis in a cell-based lung metastatic tumor model and xenogeneic subcutaneous tumor model. Collectively, our study provides evidence that Ref-1 upregulation via constitutive activation of BRAF in PTC contributes to intrinsic resistance to vemurafenib. Combined treatment with a Ref-1 redox inhibitor and a BRAF inhibitor could make PTC more sensitive to vemurafenib and enhance the antitumor effects of vemurafenib by further inhibiting the MAPK pathway and activating the excessive autophagy and related senescence process.Subject terms: Cancer therapeutic resistance, Head and neck cancer  相似文献   

18.
Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3' splice site (3'ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3'ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3'ss distance and masked potential 3'ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3'ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3'ss recognition.  相似文献   

19.
Splicing of pre-mRNAs occurs via a lariat intermediate in which an intronic adenosine, embedded within a branch point sequence, forms a 2'',5''-phosphodiester bond (RNA branch) with the 5'' end of the intron. How the branch point is recognized and activated remains largely unknown. Using site-specific photochemical cross-linking, we have identified two proteins that specifically interact with the branch point during the splicing reaction. U2AF65, an essential splicing factor that binds to the adjacent polypyrimidine tract, crosslinks to the branch point at the earliest stage of spliceosome formation in an ATP-independent manner. A novel 28-kDa protein, which is a constituent of the mature spliceosome, contacts the branch point after the first catalytic step. Our results indicate that the branch point is sequentially recognized by distinct splicing factors in the course of the splicing reaction.  相似文献   

20.
A first step in understanding the architecture of the spliceosome is elucidating the positions of individual spliceosomal components and functional centers. Catalysis of the first step of pre-mRNA splicing leads to the formation of the spliceosomal C complex, which contains the pre-mRNA intermediates--the cleaved 5' exon and the intron-3' exon lariat. To topographically locate the catalytic center of the human C complex, we first determined, by DNA oligonucleotide-directed RNAse H digestions, accessible pre-mRNA regions closest to nucleotides of the cleaved 5' splice site (i.e., the 3' end of exon 1 and the 5' end of the intron) and the intron lariat branch point, which are expected to be at/near the catalytic center in complex C. For electron microscopy (EM) localization studies, C complexes were allowed to form, and biotinylated 2'-OMe RNA oligonucleotides were annealed to these accessible regions. To allow localization by EM of the bound oligonucleotide, first antibiotin antibodies and then protein A-coated colloidal gold were additionally bound. EM analyses allowed us to map the position of exon and intron nucleotides near the cleaved 5' splice site, as well as close to the anchoring site just upstream of the branch adenosine. The identified positions in the C complex EM map give first hints as to the path of the pre-mRNA splicing intermediates in an active spliceosomal C complex and further define a possible location for its catalytic center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号