共查询到20条相似文献,搜索用时 15 毫秒
1.
Helena L.E. Coker Matthew R. Cheetham Daniel R. Kattnig Yong J. Wang Sergi Garcia-Manyes Mark I. Wallace 《Biophysical journal》2019,116(6):1085-1094
Diffusion in cell membranes is not just simple two-dimensional Brownian motion but typically depends on the timescale of the observation. The physical origins of this anomalous subdiffusion are unresolved, and model systems capable of quantitative and reproducible control of membrane diffusion have been recognized as a key experimental bottleneck. Here, we control anomalous diffusion using supported lipid bilayers containing lipids derivatized with polyethylene glycol (PEG) headgroups. Bilayers with specific excluded area fractions are formed by control of PEG lipid mole fraction. These bilayers exhibit a switch in diffusive behavior, becoming anomalous as bilayer continuity is disrupted. Using a combination of single-molecule fluorescence and interferometric imaging, we measure the anomalous behavior in this model over four orders of magnitude in time. Diffusion in these bilayers is well described by a power-law dependence of the mean-square displacement with observation time. Anomaleity in this system can be tailored by simply controlling the mole fraction of PEG lipid, producing bilayers with diffusion parameters similar to those observed for anomalous diffusion in biological membranes. 相似文献
2.
Fernando G. Dupuy Isabella Pagano Kathryn Andenoro Maria F. Peralta Yasmene Elhady Frank Heinrich Stephanie Tristram-Nagle 《Biophysical journal》2018,114(4):919-928
Although colistin’s clinical use is limited due to its nephrotoxicity, colistin is considered to be an antibiotic of last resort because it is used to treat patients infected with multidrug-resistant bacteria. In an effort to provide molecular details about colistin’s ability to kill Gram-negative (G(?)) but not Gram-positive (G(+)) bacteria, we investigated the biophysics of the interaction between colistin and lipid mixtures mimicking the cytoplasmic membrane of G(+), G(?) bacteria as well as eukaryotic cells. Two different models of the G(?) outer membrane (OM) were assayed: lipid A with two deoxy-manno-octulosonyl sugar residues, and Escherichia coli lipopolysaccharide mixed with dilaurylphosphatidylglycerol. We used circular dichroism and x-ray diffuse scattering at low and wide angle in stacked multilayered samples, and neutron reflectivity of single, tethered bilayers mixed with colistin. We found no differences in secondary structure when colistin was bound to G(?) versus G(+) membrane mimics, ruling out a protein conformational change as the cause of this difference. However, bending modulus KC perturbation was quite irregular for the G(?) inner membrane, where colistin produced a softening of the membranes at an intermediate lipid/peptide molar ratio but stiffening at lower and higher peptide concentrations, whereas in G(+) and eukaryotic mimics there was only a slight softening. Acyl chain order in G(?) was perturbed similarly to KC. In G(+), there was only a slight softening and disordering effect, whereas in OM mimics, there was a slight stiffening and ordering of both membranes with increasing colistin. X-ray and neutron reflectivity structural results reveal colistin partitions deepest to reach the hydrocarbon interior in G(?) membranes, but remains in the headgroup region in G(+), OM, and eukaryotic mimics. It is possible that domain formation is responsible for the erratic response of G(?) inner membranes to colistin and for its deeper penetration, which could increase membrane permeability. 相似文献
3.
Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation. 相似文献
4.
5.
Jason Paxman Brady Hunt David Hallan Samuel R. Zarbock Dixon J. Woodbury 《Biophysical journal》2017,112(1):121-132
Although the effects of ethanol on protein receptors and lipid membranes have been studied extensively, ethanol’s effect on vesicles fusing to lipid bilayers is not known. To determine the effect of alcohols on fusion rates, we utilized the nystatin/ergosterol fusion assay to measure fusion of liposomes to a planar lipid bilayer (BLM). The addition of ethanol excited fusion when applied on the cis (vesicle) side, and inhibited fusion on the trans side. Other short-chain alcohols followed a similar pattern. In general, the inhibitory effect of alcohols (trans) occurs at lower doses than the excitatory (cis) effect, with a decrease of 29% in fusion rates at the legal driving limit of 0.08% (w/v) ethanol (IC50 = 0.2% v/v, 34 mM). Similar inhibitory effects were observed with methanol, propanol, and butanol, with ethanol being the most potent. Significant variability was observed with different alcohols when applied to the cis side. Ethanol and propanol enhanced fusion, butanol also enhanced fusion but was less potent, and low doses of methanol mildly inhibited fusion. The inhibition by trans addition of alcohols implies that they alter the planar membrane structure and thereby increase the activation energy required for fusion, likely through an increase in membrane fluidity. The cis data are likely a combination of the above effect and a proportionally greater lowering of the vesicle lysis tension and hydration repulsive pressure that combine to enhance fusion. Alternate hypotheses are also discussed. The inhibitory effect of ethanol on liposome-membrane fusion is large enough to provide a possible biophysical explanation of compromised neuronal behavior. 相似文献
6.
7.
Philip R. Nicovich Joanna M. Kwiatek Yuanqing Ma Aleš Benda Katharina Gaus 《Biophysical journal》2018,114(12):2855-2864
The coexistence of lipid domains with different degrees of lipid packing in the plasma membrane of mammalian cells has been postulated, but direct evidence has so far been challenging to obtain because of the small size and short lifetime of these domains in live cells. Here, we use fluorescence spectral correlation spectroscopy in conjunction with a probe sensitive to the membrane environment to quantify spectral fluctuations associated with dynamics of membrane domains in live cells. With this method, we show that membrane domains are present in live COS-7 cells and have a lifetime lower bound of 5.90 and 14.69 ms for the ordered and disordered phases, respectively. Comparisons to simulations indicate that the underlying mechanism of these fluctuations is complex but qualitatively described by a combination of dye diffusion between membrane domains as well as the motion of domains within the membrane. 相似文献
8.
Daniel Balleza Andrea Mescola Nathaly Marín–Medina Gregorio Ragazzini Marco Pieruccini Paolo Facci Andrea Alessandrini 《Biophysical journal》2019,116(3):503-517
Understanding the lateral organization of biological membranes plays a key role on the road to fully appreciate the physiological functions of this fundamental barrier between the inside and outside regions of a cell. Ternary lipid bilayers composed of a high and a low melting temperature lipid and cholesterol represent a model system that mimics some of the important thermodynamical features of much more complex lipid mixtures such as those found in mammal membranes. The phase diagram of these ternary mixtures can be studied exploiting fluorescence microscopy in giant unilamellar vesicles, and it is typically expected to give rise, for specific combinations of composition and temperature, to regions of two-phase coexistence and a region with three-phase coexistence, namely, the liquid-ordered, liquid-disordered, and solid phases. Whereas the observation of two-phase coexistence is routinely possible using fluorescence microscopy, the three-phase region is more elusive to study. In this article, we show that particular lipid mixtures containing diphytanoyl-phosphatidylcholine and cholesterol plus different types of sphingomyelin (SM) are prone to produce bilayer regions with more than two levels of fluorescence intensity. We found that these intensity levels occur at low temperature and are linked to the copresence of long and asymmetric chains in SMs and diphytanoyl-phosphatidylcholine in the lipid mixtures. We discuss the possible interpretations for this observation in terms of bilayer phase organization in the presence of sphingolipids. Additionally, we also show that in some cases, liposomes in the three-phase coexistence state exhibit extreme sensitivity to lateral tension. We hypothesize that the appearance of the different phases is related to the asymmetric structure of SMs and to interdigitation effects. 相似文献
9.
Fatemeh Azadi-Chegeni Meaghan E. Ward Giorgio Perin Diana Simionato Tomas Morosinotto Marc Baldus Anjali Pandit 《Biophysical journal》2021,120(2):270-283
Photosynthetic light-harvesting complexes (LHCs) of higher plants, moss, and green algae can undergo dynamic conformational transitions, which have been correlated to their ability to adapt to fluctuations in the light environment. Herein, we demonstrate the application of solid-state NMR spectroscopy on native, heterogeneous thylakoid membranes of Chlamydomonas reinhardtii (Cr) and on Cr light-harvesting complex II (LHCII) in thylakoid lipid bilayers to detect LHCII conformational dynamics in its native membrane environment. We show that membrane-reconstituted LHCII contains selective sites that undergo fast, large-amplitude motions, including the phytol tails of two chlorophylls. Protein plasticity is also observed in the N-terminal stromal loop and in protein fragments facing the lumen, involving sites that stabilize the xanthophyll-cycle carotenoid violaxanthin and the two luteins. The results report on the intrinsic flexibility of LHCII pigment-protein complexes in a membrane environment, revealing putative sites for conformational switching. In thylakoid membranes, fast dynamics of protein and pigment sites is significantly reduced, which suggests that in their native organelle membranes, LHCII complexes are locked in specific conformational states. 相似文献
10.
Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored. 相似文献
11.
Raphael Hubrich Yongsoo Park Ingo Mey Reinhard Jahn Claudia Steinem 《Biophysical journal》2019,116(2):308-318
Pore-spanning membranes (PSMs) composed of supported membrane parts as well as freestanding membrane parts are shown to be very versatile to investigate SNARE-mediated fusion on the single-particle level. They provide a planar geometry readily accessible by confocal fluorescence microscopy, which enabled us for the first time, to our knowledge, to investigate the fusion of individual natural secretory granules (i.e., chromaffin granules (CGs)) on the single-particle level by two-color fluorescence microscopy in a time-resolved manner. The t-SNARE acceptor complex ΔN49 was reconstituted into PSMs containing 2 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol-4,5-bisphosphate and Atto488-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, and CGs were fluorescently labeled with 2-((1E,3E)-5-((Z)-3,3-dimethyl-1-octadecylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-1-octadecyl-3H-indol-1-ium perchlorate. We compared the dynamics of docked and hemifused CGs as well as their fusion efficacy and kinetics with the results obtained for synthetic synaptobrevin 2-doped vesicles fusing with PSMs of the same composition. Whereas the synthetic vesicles were fully immobile on supported PSMs, docked as well as hemifused CGs were mobile on both PSM parts, which suggests that this system resembles more closely the natural situation. The fusion process of CGs proceeded through three-dimensional post-lipid-mixing structures, which were readily resolved on the gold-covered pore rims of the PSMs and which are discussed in the context of intermediate states observed in live cells. 相似文献
12.
Quentin Lubart Helene Vitet Fabien Dalonneau Aline Le Roy Mathieu Kowalski Morgane Lourdin Christine Ebel Marianne Weidenhaupt Catherine Picart 《Biophysical journal》2018,114(1):98-112
Moesin, a protein of the ezrin, radixin, and moesin family, which links the plasma membrane to the cytoskeleton, is involved in multiple physiological and pathological processes, including viral budding and infection. Its interaction with the plasma membrane occurs via a key phosphoinositide, the phosphatidyl(4,5)inositol-bisphosphate (PIP2), and phosphorylation of residue T558, which has been shown to contribute, in cellulo, to a conformationally open protein. We study the impact of a double phosphomimetic mutation of moesin (T235D, T558D), which mimics the phosphorylation state of the protein, on protein/PIP2/microtubule interactions. Analytical ultracentrifugation in the micromolar range showed moesin in the monomer and dimer forms, with wild-type (WT) moesin containing a slightly larger fraction (~30%) of dimers than DD moesin (10–20%). Only DD moesin was responsive to PIP2 in its micellar form. Quantitative cosedimentation assays using large unilamellar vesicles and quartz crystal microbalance on supported lipid bilayers containing PIP2 reveal a specific cooperative interaction for DD moesin with an ability to bind two PIP2 molecules simultaneously, whereas WT moesin was able to bind only one. In addition, DD moesin could subsequently interact with microtubules, whereas WT moesin was unable to do so. Altogether, our results point to an important role of these two phosphorylation sites in the opening of moesin: since DD moesin is intrinsically in a more open conformation than WT moesin, this intermolecular interaction is reinforced by its binding to PIP2. We also highlight important differences between moesin and ezrin, which appear to be finely regulated and to exhibit distinct molecular behaviors. 相似文献
13.
Florence Yellin Yizeng Li Varun K.A. Sreenivasan Brenda Farrell Manu B. Johny David Yue Sean X. Sun 《Biophysical journal》2018,114(9):2231-2242
Cell volume regulation is fundamentally important in phenomena such as cell growth, proliferation, tissue homeostasis, and embryogenesis. How the cell size is set, maintained, and changed over a cell’s lifetime is not well understood. In this work we focus on how the volume of nonexcitable tissue cells is coupled to the cell membrane electrical potential and the concentrations of membrane-permeable ions in the cell environment. Specifically, we demonstrate that a sudden cell depolarization using the whole-cell patch clamp results in a 50% increase in cell volume, whereas hyperpolarization results in a slight volume decrease. We find that cell volume can be partially controlled by changing the chloride or the sodium/potassium concentrations in the extracellular environment while maintaining a constant external osmotic pressure. Depletion of external chloride leads to a volume decrease in suspended HN31 cells. Introducing cells to a high-potassium solution causes volume increase up to 50%. Cell volume is also influenced by cortical tension: actin depolymerization leads to cell volume increase. We present an electrophysiology model of water dynamics driven by changes in membrane potential and the concentrations of permeable ions in the cells surrounding. The model quantitatively predicts that the cell volume is directly proportional to the intracellular protein content. 相似文献
14.
15.
Calcium-calmodulin-dependent kinase II (CaMKII) has an important role in dendritic spine remodeling upon synaptic stimulation. Using fluorescence video microscopy and image analysis, we investigated the architectural dynamics of rhodamine-phalloidin stabilized filamentous actin (F-actin) networks cross-linked by CaMKII. We used automated image analysis to identify F-actin bundles and crossover junctions and developed a dimensionless metric to characterize network architecture. Similar networks were formed by three different CaMKII species with a 10-fold length difference in the linker region between the kinase domain and holoenzyme hub, implying linker length is not a primary determinant of F-actin cross-linking. Electron micrographs showed that at physiological molar ratios, single CaMKII holoenzymes cross-linked multiple F-actin filaments at random, whereas at higher CaMKII/F-actin ratios, filaments bundled. Light microscopy established that the random network architecture resisted macromolecular crowding with polyethylene glycol and blocked ATP-powered compaction by myosin-II miniature filaments. Importantly, the networks disassembled after the addition of calcium-calmodulin and were then spaced within 3 min into compacted foci by myosin motors or more slowly (30 min) aggregated by crowding. Single-molecule total internal reflection fluorescence microscopy showed CaMKII dissociation from surface-immobilized globular actin exhibited a monoexponential dwell-time distribution, whereas CaMKII bound to F-actin networks had a long-lived fraction, trapped at crossover junctions. Release of CaMKII from F-actin, triggered by calcium-calmodulin, was too rapid to measure with flow-cell exchange (<20 s). The residual bound fraction was reduced substantially upon addition of an N-methyl-D-aspartate receptor peptide analog but not ATP. These results provide mechanistic insights to CaMKII-actin interactions at the collective network and single-molecule level. Our findings argue that CaMKII-actin networks in dendritic spines maintain spine size against physical stress. Upon synaptic stimulation, CaMKII is disengaged by calcium-calmodulin, triggering network disassembly, expansion, and subsequent compaction by myosin motors with kinetics compatible with the times recorded for the poststimulus changes in spine volume. 相似文献
16.
Alena Khmelinskaia Jonas Mücksch Franco Conci Grzegorz Chwastek Petra Schwille 《Biophysical journal》2018,114(10):2444-2454
In vitro membrane model systems are used to dissect complex biological phenomena under controlled unadulterated conditions. In this context, lipid monolayers are a powerful tool to particularly study the influence of lipid packing on the behavior of membrane proteins. Here, monolayers deposited in miniaturized fixed area-chambers, which require only minute amounts of protein, were used and shown to faithfully reproduce the characteristics of Langmuir monolayers. This assay is ideally suited to be combined with single-molecule sensitive fluorescence correlation spectroscopy (FCS) to characterize diffusion dynamics. Our results confirm the influence of lipid packing on lipid mobility and validate the use of FCS as an alternative to conventional surface pressure measurements for characterizing the monolayer. Furthermore, we demonstrate the effect of lipid density on the diffusional behavior of membrane-bound components. We exploit the sensitivity of FCS to characterize protein interactions with the lipid monolayer in a regime in which the monolayer physical properties are not altered. To demonstrate the potential of our approach, we analyzed the diffusion behavior of objects of different nature, ranging from a small peptide to a large DNA-based nanostructure. Moreover, in this work we quantify the surface viscosity of lipid monolayers. We present a detailed strategy for the conduction of point FCS experiments on lipid monolayers, which is the first step toward extensive studies of protein-monolayer interactions. 相似文献
17.
The influence of cholesterol (CHOL) level on integrin sequestration in raft-mimicking lipid mixtures forming coexisting liquid-ordered (lo) and liquid-disordered (ld) lipid domains is investigated using complementary, single-molecule-sensitive, confocal detection methods. Systematic analysis of membrane protein distribution in such a model membrane environment demonstrates that variation of CHOL level has a profound influence on lo-ld sequestration of integrins, thereby exhibiting overall ld preference in the absence of ligands and lo affinity upon vitronectin addition. Accompanying photon-counting histogram analysis of integrins in the different model membrane mixtures shows that the observed changes of integrin sequestration in response to variations of membrane CHOL level are not associated with altering integrin oligomerization states. Instead, our experiments suggest that the strong CHOL dependence of integrin sequestration can be attributed to CHOL-mediated changes of lipid packing and bilayer thickness in coexisting lo and ld domains, highlighting the significance of a biophysical mechanism of CHOL-mediated regulation of integrin sequestration. We envision that this model membrane study may help clarify the influence of CHOL in integrin functionality in plasma membranes, thus providing further insight into the role of lipid heterogeneities in membrane protein distribution and function in a cellular membrane environment. 相似文献
18.
19.
Cells store excess energy in the form of neutral lipids that are synthesized and encapsulated within the endoplasmic reticulum intermonolayer space. The lipids next demix to form lipid droplets (LDs), which, surprisingly, bud off mostly toward the cytosol. This directional LD formation is critical to energy metabolism, but its mechanism remains poorly understood. Here, we reconstituted the LD formation topology by embedding artificial LDs into the intermonolayer space of bilayer vesicles. We provide experimental evidence that the droplet behavior in the membrane is recapitulated by the physics of three-phase wetting systems, dictated by the equilibrium of surface tensions. We thereupon determined that slight tension asymmetries between the membrane monolayers regulate the droplet budding side. A differential regulation of lipid or protein composition around a forming LD can generate a monolayer tension asymmetry that will determine the LD budding side. Our results offer, to our knowledge, new insights on how the proteins might regulate LD formation side by generating a monolayer tension asymmetry. 相似文献
20.
Cynthia?A. Stanich Aurelia?R. Honerkamp-Smith Gregory?Garbès Putzel Christopher?S. Warth Andrea?K. Lamprecht Pritam Mandal Elizabeth Mann Thien-An?D. Hua Sarah?L. Keller 《Biophysical journal》2013,105(2):444-454
We investigate isothermal diffusion and growth of micron-scale liquid domains within membranes of free-floating giant unilamellar vesicles with diameters between 80 and 250 μm. Domains appear after a rapid temperature quench, when the membrane is cooled through a miscibility phase transition such that coexisting liquid phases form. In membranes quenched far from a miscibility critical point, circular domains nucleate and then progress within seconds to late stage coarsening in which domains grow via two mechanisms 1), collision and coalescence of liquid domains, and 2), Ostwald ripening. Both mechanisms are expected to yield the same growth exponent, α = 1/3, where domain radius grows as timeα. We measure α = 0.28 ± 0.05, in excellent agreement. In membranes close to a miscibility critical point, the two liquid phases in the membrane are bicontinuous. A quench near the critical composition results in rapid changes in morphology of elongated domains. In this case, we measure α = 0.50 ± 0.16, consistent with theory and simulation. 相似文献