首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landrace rice in Thailand consists of managed populations grown under traditional and long‐standing agricultural practices. These populations evolve both in response to environmental conditions within the local agro‐ecosystem and in response to human activities. Single landraces are grown across varying environments and recently have experienced temporal changes in local environments due to climate change. Here we assess the interplay between natural selection in a changing climate and human‐mediated selection on the population genetic structure of Muey Nawng, a local landrace of Thai rice. Genetic diversity and population structure of landrace rice were assessed by a STRUCTURE analysis of 20 microsatellite loci. The first exon–intron junction of the waxy gene was sequenced to determine genotypes for glutinous or non‐glutinous grain starch. Muey Nawng rice is genetically variable and is structured based on starch grain types and the level of resistance to gall midge pest. A strong positive correlation was found between genetic diversity and the percentage of gall midge infestation. Variation in the waxy locus is correlated with starch quality; selection for non‐glutinous rice appears to involve additional genes. The dynamics of genetic diversity within Muey Nawng rice depends on three factors: (a) a genetic bottleneck caused by strong selection associated with gall midge infestation, (b) selection by local farmers for starch quality and (c) variation introduced by farmer practices for cultivation and seed exchange. These results, when taken in total, document the ability of landrace rice to quickly evolve in response to both natural and human‐mediated selection.  相似文献   

2.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

3.
Tiranti B  Negri V 《Molecular ecology》2007,16(23):4942-4955
Little is known about the organization of landrace diversity and about the forces that shape and maintain within- and among-landrace population diversity. However, this knowledge is essential for conservation and breeding activities. The first aim of this study was to obtain some insight into how variation has been sculptured within a cultivated environment and to identify the loci that potentially underlie selective effects by using a Phaseolus vulgaris L. landrace case study whose natural and human environment and morpho-physiological traits are known in detail. The second aim of this study was to define an appropriate on-farm conservation strategy which can serve as a model for other populations. The farmers' populations of this threatened landrace were examined with 28 single sequence repeat molecular markers. The landrace appears to be a genetically structured population in which substantial diversity is maintained at the subpopulation level (62% of the total variance). Evidence of locus-specific selective effects was obtained for five of the 13 loci-differentiating subpopulations. Their role is discussed. Our data suggest that a complex interaction of factors (differential microenvironmental selection pressures by farmers and by biotic and abiotic conditions, migration rate and drift) explains the observed pattern of diversity. Appropriate on-farm conservation of a structured landrace requires the maintenance of the entire population.  相似文献   

4.
BACKGROUND: Artificial selection results in phenotypic evolution. Maize (Zea mays L. ssp. mays) was domesticated from its wild progenitor teosinte (Zea mays subspecies parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties. The landraces provided the genetic material for modern plant breeders to select improved varieties and inbred lines by enhancing traits controlling agricultural productivity and performance. Artificial selection during domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. SCOPE: This review is a summary of research on the identification and characterization by population genetics approaches of genes affected by artificial selection in maize. CONCLUSIONS: Analysis of DNA sequence diversity at a large number of genes in a sample of teosintes and maize inbred lines indicated that approx. 2 % of maize genes exhibit evidence of artificial selection. The remaining genes give evidence of a population bottleneck associated with domestication and crop improvement. In a second study to efficiently identify selected genes, the genes with zero sequence diversity in maize inbreds were chosen as potential targets of selection and sequenced in diverse maize landraces and teosintes, resulting in about half of candidate genes exhibiting evidence for artificial selection. Extended gene sequencing demonstrated a low false-positive rate in the approach. The selected genes have functions consistent with agronomic selection for plant growth, nutritional quality and maturity. Large-scale screening for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown. These approaches should also be applicable to other domesticated species if specific demographic conditions during domestication exist.  相似文献   

5.
Maize (Zea mays subsp mays) was domesticated from teosinte (Z. mays subsp parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties, which were spread throughout the Americas by Native Americans and adapted to a wide range of environmental conditions. Starting with landraces, 20th century plant breeders selected inbred lines of maize for use in hybrid maize production. Both domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. Here, we sequenced 1095 maize genes from a sample of 14 inbred lines and chose 35 genes with zero sequence diversity as potential targets of selection. These 35 genes were then sequenced in a sample of diverse maize landraces and teosintes and tested for selection. Using two statistical tests, we identified eight candidate genes. Extended gene sequencing of these eight candidate loci confirmed that six were selected throughout the gene, and the remaining two exhibited evidence of selection in the 3' portion of each gene. The selected genes have functions consistent with agronomic selection for nutritional quality, maturity, and productivity. Our large-scale screen for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown.  相似文献   

6.
We report on a whole‐genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole‐genome shotgun sequencing of the 7.9‐Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low‐copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high‐density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high‐density genetic map and establishing a synteny‐based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome‐wide map of selection signals differentiating the divergent gene pools. This rye whole‐genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome‐based breeding in rye.  相似文献   

7.
The male genitalia of arthropods consistently show negative static allometry (the genitalia of small males of a species are disproportionally large, and those of large males are disproportionally small). We discuss relations between the ‘one‐size‐fits‐all’ hypothesis to explain this allometry and the regimes of selection that may be acting on genitalia. We focus on the contrasts between directional vs. stabilizing selection, and natural vs. sexual selection. In addition, we point out some common methodological problems in studies of genital allometry. One‐size‐fits‐all types of arguments for negative allometry imply net stabilizing selection, but the effects of stabilizing selection on allometry will be weaker when the correlation between body size and the trait size is weaker. One‐size‐fits‐all arguments can involve natural as well as sexual selection, and negative allometry can also result from directional selection. Several practical problems make direct tests of whether directional or stabilizing selection is acting difficult. One common methodological problem in previous studies has been concentration on absolute rather than relative values of the allometric slopes of genitalia; there are many reasons to doubt the usefulness of comparing absolute slopes with the usual reference value of 1.00. Another problem has been the failure to recognize that size and shape are independent traits of genitalia; rapid divergence in the shape of genitalia is thus not paradoxical with respect to the reduced variation in their sizes that is commonly associated with negative allometric scaling.  相似文献   

8.
Maintaining genetic diversity is a crucial goal of intensive management of threatened species, particularly for those populations that act as sources for translocation or re‐introduction programmes. Most captive genetic management is based on pedigrees and a neutral theory of inheritance, an assumption that may be violated by selective forces operating in captivity. Here, we explore the conservation consequences of early viability selection: differential offspring survival that occurs prior to management or research observations, such as embryo deaths in utero. If early viability selection produces genotypic deviations from Mendelian predictions, it may undermine management strategies intended to minimize inbreeding and maintain genetic diversity. We use empirical examples to demonstrate that straightforward approaches, such as comparing litter sizes of inbred vs. noninbred breeding pairs, can be used to test whether early viability selection likely impacts estimates of inbreeding depression. We also show that comparing multilocus genotype data to pedigree predictions can reveal whether early viability selection drives systematic biases in genetic diversity, patterns that would not be detected using pedigree‐based statistics alone. More sophisticated analysis combining genomewide molecular data with pedigree information will enable conservation scientists to test whether early viability selection drives deviations from neutrality across wide stretches of the genome, revealing whether this form of selection biases the pedigree‐based statistics and inference upon which intensive management is based.  相似文献   

9.
When populations are partially inbred due to the population structure or to a mixed mating system like partial self-fertilization, some individuals will be more inbred than others. This heterogeneity among individuals in the history of inbreeding can greatly complicate the interpretation of measures of quantitative genetic variability when the traits studied exhibit inbreeding depression. Partial inbreeding can also bias measures of phenotypic selection toward the detection of strong directional and stabilizing selection. In this paper, data are presented from several inbreeding experiments conducted on two partially selfing, annual populations of the monkeyflower Mimulus guttatus that show that the means of many of the morphological and phenological traits measured were affected by inbreeding. These findings imply that estimates of heritabilities and additive genetic covariances would not reflect the potential for these populations to respond to selection. Phenotypic selection analyses conducted on naturally occurring plants, involving linear regressions of relative seed production on the traits, revealed significant directional selection on many of the same quantitative traits measured in the inbreeding studies. However, when the same selection analyses were performed on plants with known histories of inbreeding, part of the statistical relationship between relative seed number and the traits was found to be due to the mating system: inbred individuals had both lower seed production and different mean values for the traits than outcrossed individuals. It is also shown, with a hypothetical example, that partial inbreeding can bias measures of stabilizing selection toward the detection of strong stabilizing selection. Partial inbreeding therefore tends to make directional and stabilizing selection appear stronger than it is, and it may be that natural selection in the wild is actually weaker than many studies of partially inbred species suggest.  相似文献   

10.
We addressed whether Zea seedling morphology relevant to performance, defence hormone profiles and tolerance of a phloem‐feeding, specialist herbivore were affected by two processes, plant domestication and modern breeding. Domestication effects were inferred through comparisons between Balsas teosintes (Zea mays parviglumis) and landrace maizes (Z. mays mays), and modern breeding effects through comparisons between landrace maizes and inbred maize lines. Specifically, we compared seedling forms (a composite measure of leaf length, average stem diameter, shoot wet weight, shoot dry weight, total root length, root wet weight, and root dry weight), shapes (forms scaled by seedling dry weight, a proxy for seedling size), and defence hormone profiles among Balsas teosinte and landrace and inbred line maizes, exposed or unexposed to feeding by Dalbulus maidis. Our results suggested that domestication as well as modern breeding strongly mediated both seedling form and shape. Form was more similar between landrace and inbred maize than between Balsas teosinte and landrace maize, suggesting that domestication affected seedling form more than modern breeding. In contrast, shape was more similar between Balsas teosinte and landrace maize than between landrace and inbred maizes, suggesting that modern breeding affected seedling shape more than domestication. Additionally, seedling shoot : root ratios appeared to have been mediated by domestication, but not by modern breeding. In broad terms, individual seedling structures relevant to seedling ecology in wild or managed environments, such as leaf and root lengths, and shoot and root masses, were enlarged with domestication and reduced with modern breeding. Herbivory did not affect seedling shape, but had a weak effect on form so that seedlings were slightly larger in the absence versus presence of D. maidis. Also, both domestication and modern breeding seem to have mediated seedling hormone profiles, with breeding more strongly mediating profiles than domestication. Jasmonic acid isoleucine (JA‐Ile) and salicylic acid (SA) were induced by herbivory in both teosinte and maize. The hormone profiles assays collectively suggested that domestication and modern breeding altered constitutive levels of SA, abscisic acid and JA‐related (JA‐Ile and oxo‐phytodienoic acid) hormone levels in seedlings, particularly by increasing the levels of SA and decreasing those of JA‐related hormones. Altogether, our results suggested that maize domestication and modern breeding significantly altered seedling form, shape, ecologically relevant morphological traits (e.g. leaf and root lengths, and shoot and root masses) and hormonal defences, but not tolerance of D. maidis herbivory.  相似文献   

11.
Variation in life‐history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life‐history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system.  相似文献   

12.
The genes of the major histocompatibility complex (MHC) are an important component of the vertebrate immune system and can provide insights into the role of pathogen‐mediated selection in wild populations. Here, we examined variation at the MHC class II peptide‐binding region in 27 populations of sockeye salmon (Oncorhynchus nerka), distributed among three distinct spawning ecotypes, from a complex of interconnected rivers and lakes in south‐western Alaska. We also obtained genotypes from 90 putatively neutral single nucleotide polymorphisms for each population to compare the relative roles of demography and selection in shaping the observed MHC variation. We found that MHC divergence was generally partitioned by spawning ecotype (lake beaches, rivers and streams) and was 30 times greater than variation at neutral markers. Additionally, we observed substantial differences in modes of selection and diversity among ecotypes, with beach populations displaying higher levels of directional selection and lower MHC diversity than the other two ecotypes. Finally, the level of MHC differentiation in our study system was comparable to that observed over much larger geographic ranges, suggesting that MHC variation does not necessarily increase with increasing spatial scale and may instead be driven by fine‐scale differences in pathogen communities or pathogen virulence. The low levels of neutral structure and spatial proximity of populations in our study system indicate that MHC differentiation can be maintained through strong selective pressure even when ample opportunities for gene flow exist.  相似文献   

13.
Natural selection is expected to leave an imprint on the neutral polymorphisms at the adjacent genomic regions of a selected gene. While directional selection tends to reduce within-population genetic diversity and increase among-population differentiation, the reverse is expected under balancing selection. To identify targets of natural selection in the three-spined stickleback ( Gasterosteus aculeatus ) genome, 103 microsatellite and two indel markers including expressed sequence tags (EST) and quantitative trait loci (QTL)-associated loci, were genotyped in four freshwater and three marine populations. The results indicated that a high proportion of loci (14.7%) might be affected by balancing selection and a lower proportion (2.8%) by directional selection. The strongest signatures of directional selection were detected in a microsatellite locus and two indel markers located in the intronic regions of the Eda-gene coding for the number of lateral plates. Yet, other microsatellite loci previously found to be informative in QTL-mapping studies revealed no signatures of selection. Two novel microsatellite loci ( Stn12 and Stn90 ) located in chromosomes I and VIII, respectively, showed signals of directional selection and might be linked to genomic regions containing gene(s) important for adaptive divergence. Although the coverage of the total genomic content was relatively low, the predominance of balancing selection signals is in agreement with the contention that balancing, rather than directional selection is the predominant mode of selection in the wild.  相似文献   

14.
Local populations within a species can become isolated by stochastic or adaptive processes, though it is most commonly the former that we quantify. Using presumably neutral markers we can assess the time‐dependent process of genetic drift, and thereby quantify patterns of differentiation in support of the effective management of diversity. However, adaptive differences can be overlooked in these studies, and these are the very characteristics that we hope to conserve by managing neutral diversity. In this study, we used 16 hypothetically neutral microsatellite markers to investigate the genetic structure of the roundnose grenadier in the North Atlantic. We found that one locus was a clear outlier under directional selection, with FST values much greater than at the remaining loci. Differentiation between populations at this locus was related to depth, suggesting directional selection, presumably acting on a linked locus. Considering only the loci identified as neutral, there remained significant population structure over the region of the North Atlantic studied. In addition to a weak pattern of isolation by distance, we identified a putative barrier to gene flow between sample sites either side of the Charlie‐Gibbs Fracture Zone, which marks the location where the sub‐polar front crosses the Mid‐Atlantic Ridge. This may reflect a boundary across which larvae are differentially distributed in separate current systems to some extent, promoting differentiation by drift. Structure due to both drift and apparent selection should be considered in management policy.  相似文献   

15.
The raw material for evolution is variation. Consequently, identifying the factors that generate, maintain, and erode phenotypic and genetic variation in ecologically important traits within and among populations is important. Although persistent directional or stabilizing selection can deplete variation, spatial variation in conflicting directional selection can enhance variation. Here, we present evidence that phenotypic variation in limber pine (Pinus flexilis) cone structure is enhanced by conflicting selection pressures exerted by its mutualistic seed disperser (Clark's nutcracker Nucifraga columbiana) and an antagonistic seed predator (pine squirrel Tamiasciurus spp.). Phenotypic variation in cone structure was bimodal and about two times greater where both agents of selection co‐occurred than where one (the seed predator) was absent. Within the region where both agents of selection co‐occurred, bimodality in cone structure was pronounced where there appears to be a mosaic of habitats with some persistent habitats supporting only the seed disperser. These results indicate that conflicting selection stemming from spatial variation in community diversity can enhance phenotypic variation in ecologically important traits.  相似文献   

16.
The relationship between fertility selection as measured by the correlation in progeny number between parents and offspring, and selection at individual loci is investigated in humans. Estimates for the magnitude of fertility selection (0.1) and the rate of gene substitution (0.5 gene substitutions per generation per genome) are used in various mathematical models for selection. It is found that the observed magnitude of fertility selection cannot be explained by non‐epistatic directional selection at individual loci. A symmetric quantitative directional selection model is consistent with the observed data. But it is possible that fertility selection does not have a genetic basis.  相似文献   

17.
Dynamic Management of Maize Landraces in Central Mexico   总被引:1,自引:0,他引:1  
Conservationists of crop genetic resources have feared that in situ conservation was not viable for agriculture precisely because of changes resulting from introduction of new varieties of existing crops, new crops, and new farm practices. In addition, conservation within farming systems necessarily implies a constantly changing crop population resulting from the processes of crop evolution. Even though in situ conservation of crop genetic resources is now generally understood to be dynamic, there are few examples of how evolution takes place in farmers fields. This study describes several changes in maize landraces in four communities along an altitude transect in Central Mexico (1200 to 2400 masl). While true modern varieties have not been widely adopted in the study region, farmer management results in numerous changes in maize landrace populations. Five types of dynamic management were observed: (1) purposeful hybridization between traditional and modern maize types, (2) possible creation of a new maize landrace by directional selection of the progeny of hybridization between two traditional landraces, (3) displacement of a local landrace by the introduction of a modern variety and a non-local landrace, (4) maintenance of stable populations of a locally dominant landrace, and (5) market-driven selection for a minor variety. We concur that in situ conservation of crops must be conceived as an open process where the objective is not to maintain historic varieties or static genetic conditions. Rather, in situ conservation of crops is totally in the hands of the farmer, although interventions may be designed to influence farmers’ management of agrobiodiversity.  相似文献   

18.
The extreme polymorphism of antigen‐presenting genes of the major histocompatibility complex (MHC) has spurred intense research unparalleled for any other gene family. This applies also to teleosts where sequence information is available for 3559 MHC class I and class II allelic variants from 137 species. This review summarizes current knowledge on the origin and maintenance of diversity at classical MHC loci. Most studies identified positive selection (i.e. elevated rates of non‐synonymous over synonymous substitutions, dN/dS) as a sign of balancing selection. A meta‐analysis on nine species with sufficient numbers of class I and class II sequences revealed that recombination rate and intensity of positive selection were positively correlated, suggesting that recombination and gene conversion played a significant role in shaping the allelic repertoire. Processes that create diversity over long timescales need to be complemented by contemporary balancing selection, either through overdominance or frequency‐dependent selection, in order to explain the high allelic diversity observed today. While some evidence for overdominance exists for a few taxa (mainly salmonids) by correlating parasite infection data or survival to MHC genotypes, field or experimental data on negative frequency‐dependent selection are lacking altogether, even though some fish species are particularly suitable as model systems. Theoretical predictions suggest that negative frequency‐dependent selection is necessary to maintain the existing polymorphism. Hence, future empirical studies should focus on detecting signals that differentiate between mechanisms of contemporary selection rather than repeatedly showing historical selection events.  相似文献   

19.
The signalling function of melanin‐based colouration is debated. Sexual selection theory states that ornaments should be costly to produce, maintain, wear or display to signal quality honestly to potential mates or competitors. An increasing number of studies supports the hypothesis that the degree of melanism covaries with aspects of body condition (e.g. body mass or immunity), which has contributed to change the initial perception that melanin‐based colour ornaments entail no costs. Indeed, the expression of many (but not all) melanin‐based colour traits is weakly sensitive to the environment but strongly heritable suggesting that these colour traits are relatively cheap to produce and maintain, thus raising the question of how such colour traits could signal quality honestly. Here I review the production, maintenance and wearing/displaying costs that can generate a correlation between melanin‐based colouration and body condition, and consider other evolutionary mechanisms that can also lead to covariation between colour and body condition. Because genes controlling melanic traits can affect numerous phenotypic traits, pleiotropy could also explain a linkage between body condition and colouration. Pleiotropy may result in differently coloured individuals signalling different aspects of quality that are maintained by frequency‐dependent selection or local adaptation. Colouration may therefore not signal absolute quality to potential mates or competitors (e.g. dark males may not achieve a higher fitness than pale males); otherwise genetic variation would be rapidly depleted by directional selection. As a consequence, selection on heritable melanin‐based colouration may not always be directional, but mate choice may be conditional to environmental conditions (i.e. context‐dependent sexual selection). Despite the interest of evolutionary biologists in the adaptive value of melanin‐based colouration, its actual role in sexual selection is still poorly understood.  相似文献   

20.
Polyandry has the potential to affect the distribution of phenotypes and to shape the direction of sexual selection. Here, we explore this potential using Trinidadian guppies as a model system and ask whether polyandry leads to directional and/or diversifying selection of male phenotypic traits. In this study, we compare the phenotypic diversity of offspring from multiply and singly sired broods. To quantify phenotypic diversity, we first combine phenotypic traits using multivariate methods, and then take the dispersion of individuals in multivariate space as our measure of diversity. We show that, when each trait is examined separately, polyandry generates offspring with a higher proportion of bright coloration, indicating directional selection. However, our multivariate approach reveals that this directionality is accompanied by an increase in phenotypic diversity. These results suggest that polyandry (i) selects for the production of sons with the preferred brighter colour phenotypes whereas (ii) enhancing the diversity of male sexual traits. Promoting phenotypic diversity may be advantageous in coping with environmental and reproductive variability by increasing long‐term fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号