首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyphal morphogenesis is largely determined by the mode the cell wall is synthesized. One of the main structural components of the cell wall is the chitin microfibril, whose synthesis is catalyzed at the cell surface by an organized but not fully understood complex of chitin-synthesizing enzymes. Genetic studies have identified several chitin synthase genes (chs) among different fungi. In each given species, several chitin synthases (CHS) may be present. These have been assigned to different classes (I–VII) on the basis of characteristic amino acid sequences. A revised phylogenetic scheme of fungal CHS is presented but there was no apparent correlation between CHS class and a specific cell function or cell cycle stage. The availability of methodology to make genetic fusions between CHS and green fluorescent protein (GFP) and to follow them in living cells with high-resolution confocal microscopy and widefield fluorescence microscopy has made it possible to study the location and dynamics of different CHS in several fungi. Among these, Neurospora crassa was recently used to analyse the spatial distribution and role of chitin synthases in hyphal tip growth. Here we summarise recent advances in this area with particular emphasis on N. crassa. CHS-3, CHS-6 and more recently CHS-1 are abundantly present in the distal regions of the hypha and contained in membranous structures of different shapes from spheres to elongated tubes; as the GFP–CHS tagged structures advance towards the tip, they begin to disintegrate. In the subapical region GFP–CHS was not found in large organelles; it only occurred as fine punctuate fluorescence. These minute structures are probably chitosomes. Finally, at the tip there is always a conspicuous accumulation of GFP–CHS in the Spitzenkörper core where microvesicles are known to accumulate. The collective evidence points to CHS travelling to its destination at the hyphal apex via a secretory route distinct from the conventional ER–Golgi route. The accumulation of CHS microvesicles at the Spk reinforces the view that this structure plays a pivotal role in cell wall growth and hyphal morphogenesis.  相似文献   

2.
We describe the subcellular location of chitin synthase 1 (CHS-1), one of seven chitin synthases in Neurospora crassa. Laser scanning confocal microscopy of growing hyphae showed CHS-1–green fluorescent protein (GFP) localized conspicuously in regions of active wall synthesis, namely, the core of the Spitzenkörper (Spk), the apical cell surface, and developing septa. It was also present in numerous fine particles throughout the cytoplasm plus some large vacuoles in distal hyphal regions. Although the same general subcellular distribution was observed previously for CHS-3 and CHS-6, they did not fully colocalize. Dual labeling showed that the three different chitin synthases were contained in different vesicular compartments, suggesting the existence of a different subpopulation of chitosomes for each CHS. CHS-1–GFP persisted in the Spk during hyphal elongation but disappeared from the septum after its development was completed. Wide-field fluorescence microscopy and total internal reflection fluorescence microscopy revealed subapical clouds of particles, suggestive of chitosomes moving continuously toward the Spk. Benomyl had no effect on CHS-1–GFP localization, indicating that microtubules are not strictly required for CHS trafficking to the hyphal apex. Conversely, actin inhibitors caused severe mislocalization of CHS-1–GFP, indicating that actin plays a major role in the orderly traffic and localization of CHS-1 at the apex.  相似文献   

3.
4.
Vesicle traffic involves budding, transport, tethering and fusion of vesicles with acceptor membranes. GTP‐bound small Rab GTPases interact with the membrane of vesicles, promoting their association with other factors before their subsequent fusion. Filamentous fungi contain at their hyphal apex the Spitzenkörper (Spk), a multivesicular structure to which vesicles concentrate before being redirected to specific cell sites. The regulatory mechanisms ensuring the directionality of the vesicles that travel to the Spk are still unknown. Hence, we analyzed YPT‐1, the Neurospora crassa homologue of Saccharomyces cerevisiae Ypt1p (Rab1), which regulates different secretory pathway events. Laser scanning confocal microscopy revealed fluorescently tagged YPT‐1 at the Spk and putative Golgi cisternae. Co‐expression of YPT‐1 and predicted post‐Golgi Rab GTPases showed YPT‐1 confined to the Spk microvesicular core, while SEC‐4 (Rab8) and YPT‐31 (Rab11) occupied the Spk macrovesicular peripheral layer, suggesting that trafficking and organization of macro and microvesicles at the Spk are regulated by distinct Rabs. Partial colocalization of YPT‐1 with USO‐1 (p115) and SEC‐7 indicated the additional participation of YPT‐1 at early and late Golgi trafficking steps.  相似文献   

5.
Echinocandins inhibit β‐1,3‐glucan synthesis and are one of the few antimycotic drug classes effective against Aspergillus spp. In this study, we characterized the β‐1,3‐glucan synthase Fks1 of Aspergillus fumigatus, the putative target of echinocandins. Data obtained with a conditional mutant suggest that fks1 is not essential. In agreement, we successfully constructed a viable Δfks1 deletion mutant. Lack of Fks1 results in characteristic growth phenotypes similar to wild type treated with echinocandins and an increased susceptibility to calcofluor white and sodium dodecyl sulfate. In agreement with Fks1 being the only β‐1,3‐glucan synthase in A. fumigatus, the cell wall is devoid of β‐1,3‐glucan. This is accompanied by a compensatory increase of chitin and galactosaminogalactan and a significant decrease in cell wall galactomannan due to a massively enhanced galactomannan shedding. Our data furthermore suggest that inhibition of hyphal septation can overcome the limitations of echinocandin therapy. Compounds inhibiting septum formation boosted the antifungal activity of caspofungin. Thus, development of clinically applicable inhibitors of septum formation is a promising strategy to improve existing antifungal therapy.  相似文献   

6.
Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe‐derived or modified‐self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying β‐glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different β‐glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) β‐1,3‐glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long β‐1,3‐glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short β‐1,3‐glucans. Hydrolysis of the β‐1,6 side‐branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long‐chain β‐glucans. Moreover, in contrast to the recognition of short β‐1,3‐glucans in A. thaliana, perception of long β‐1,3‐glucans in N. benthamiana and rice is independent of CERK1, indicating that β‐glucan recognition may be mediated by multiple β‐glucan receptor systems.  相似文献   

7.
Form follows function: The fungal cell wall as a support structure Within the domain of Eukarya, the fungi form a seperate kingdom. The typical formation of branched mycelia from single hyphae is based on cell wall production at the growing hyphal tip. There, excretory vesicle fuse with the membrane releasing cell wall synthesis enzymes like chitin synthase forming the polymer of N‐acetyl glucosamin, the backbone of fungal cell walls. In addition, glucan synthases form the structural component β‐1.3‐glucan. Via β‐1,6‐glucan, cell wall proteins can be linked to the maturing cell wall, and α‐1,3‐glucan can form a matrix within the cell wall, but also a slimy matrix secreted into the medium. A layer of hydrophobins allows for growth into the air, but also facilitates formation of macroscopic structures like mushrooms.  相似文献   

8.
In fungal hyphae multiple protein complexes assemble at sites of apical growth to maintain cell polarity and promote nucleation of actin. Polarity allows the directional traffic of vesicles to the Spitzenkörper (Spk) prior to fusing with the plasma membrane to provide precursors and enzymes required for cell extension and nutrition. One of these complexes is the polarisome, which in Saccharomyces cerevisiae contains Spa2p, Pea2p, Bud6p/Aip3p and Bni1p. To investigate the localization and role of the polarisome during Spk establishment in Neurospora crassa we tagged SPA-2 with the green fluorescent protein (GFP) and examined growing cells by laser scanning confocal microscopy in elongating germ tubes and mature hyphae. SPA-2-GFP accumulated gradually at the apex of germ tubes, when a FM4-64 stained Spk was not still detectable. When the germlings reached about 40 μm in length, a FM4-64 stained Spk started to be apparent and from this point on SPA-2-GFP was observed in the apical region of both germ tubes and mature hyphae, as a hand fan shape with a brighter spot at the base. Fusion of the N. crassa SPA-2-GFP strain with a N. crassa strain expressing chitin synthase 1 (CHS-1) labeled with mCherryFP indicated only partial colocalization of the polarisome and the Spk core. N. crassa SPA-2-GFP was also found at the apex of forming branches but not in septa, suggesting that it participates only in areas of tip growth. A Δspa-2 strain displayed hyphae with uneven constrictions, apices with an unstable Spk, reduced growth rate and higher number of branches than the wild type strain, indicating that SPA-2 is required for the stability, behavior and morphology of the Spk and maintenance of regular apical growth in hyphae of N. crassa, although not for polarity or Spk establishment.  相似文献   

9.
(1–3) glucan and chitin synthases were studied in spontaneously produced protoplasts and in the mycelium (hyphal body) of the entomopathogenic Entomophthorale species Entomophaga aulicae, Conidiobolus obscurus and Entomophthora muscae. The absence of wall in protoplasts was correlated to an absence of chitin synthase and to a very low (1–3) glucan synthase activity, whereas these two polysaccharide synthases were present and active in the walled hyphal bodies. Physicochemical properties of chitin and (1–3) glucan synthases such as localization, optimum pH and temperature, activation by disaccharides and proteases were similar to those found in other fungi unable to spontaneously produce protoplasts and could not be related to the ability for protoplastic Entomophthorale species to produce and proliferate under a protoplast form. The absence or the low chitin and glucan synthase activites in Entomophthorale protoplasts was not due to an absence of proteolytic activation of the enzyme. However, all protoplast fractions contained inhibitory substances of glucan and chitin synthase activities. These inhibitors were stable and specific of the protoplast stage. They were not glucanase nor chitinase. These results suggest that the absence of wall synthesis in Entomophthorale protoplasts is due to a continuous inhibition of (1–3) glucan and chitin synthase activities by intracellular compounds and also for glucan synthase by protoplast medium constituents such as NaCl and fetal calf serum.Abbreviations BSA bovine serum albumin - DFP diisopropylfluorophosphate - EDTA ethylenediamine tetraaoetic acid - FCS fetal calf serum - GlcNAc N-acetylglucosamine - TCA trichloroacetic acid - 2 k pellet 2,000 g wall fraction - 140 k pellet 140,000 g particulate fraction - 140 k supernatant 140,000 g soluble fraction  相似文献   

10.
Filamentous hyphae of the human pathogen, Candida albicans, invade mucosal layers and medical silicones. In vitro, hyphal tips reorient thigmotropically on contact with small obstacles. It is not known how surface topography is sensed but hyphae lacking the cortical marker, Rsr1/Bud1, are unresponsive. We show that, on surfaces, the morphology of hyphal tips and the position of internal polarity protein complexes are asymmetrically skewed towards the substratum and biased towards the softer of two surfaces. In nano‐fabricated chambers, the Spitzenkörper (Spk) responded to touch by translocating across the apex towards the point of contact, where its stable maintenance correlated with contour‐following growth. In the rsr1Δ mutant, the position of the Spk meandered and these responses were attenuated. Perpendicular collision caused lateral Spk oscillation within the tip until after establishment of a new growth axis, suggesting Spk position does not predict the direction of growth in C. albicans. Acute tip reorientation occurred only in cells where forward growth was countered by hyphal friction sufficient to generate a tip force of ~ 8.7 μN (1.2 MPa), more than that required to penetrate host cell membranes. These findings suggest mechanisms through which the organization of hyphal tip growth in C. albicans facilitates the probing, penetration and invasion of host tissue.  相似文献   

11.
12.
The polysaccharide β‐1,6‐glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β‐1,6‐glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β‐1,6‐glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI‐anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β‐1,6‐glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.  相似文献   

13.
Diatoms are unicellular photoautotrophic algae, which can be found in any aquatic habitat. The main storage carbohydrate of diatoms is chrysolaminarin, a nonlinear β‐glucan, consisting of a linear 1,3‐β‐chain with 1,6‐β‐branches, which is stored in cytoplasmic vacuoles. The metabolic pathways of chrysolaminarin synthesis in diatoms are poorly investigated, therefore we studied two potential 1,6‐β‐transglycosylases (TGS) of the diatom Phaeodactylum tricornutum which are similar to yeast Kre6 proteins and which potentially are involved in the branching of 1,3‐β‐glucan chains by adding d ‐glucose as 1,6‐side chains. We genetically fused the full‐length diatom TGS proteins to GFP and expressed these constructs in P. tricornutum, demonstrating that the enzymes are apparently located in the vacuoles, which indicates that branching of chrysolaminarin may occur in these organelles. Furthermore, we demonstrated the functionality of the diatom enzymes by expressing TGS1 and 2 proteins in yeast, which resulted in a partial complementation of growth deficiencies of a transglycosylase‐deficient ?kre6 yeast strain.  相似文献   

14.
15.
A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture.  相似文献   

16.
GPI‐anchoring is a universal and critical post‐translational protein modification in eukaryotes. In fungi, many cell wall proteins are GPI‐anchored, and disruption of GPI‐anchored proteins impairs cell wall integrity. After being synthesized and attached to target proteins, GPI anchors undergo modification on lipid moieties. In spite of its importance for GPI‐anchored protein functions, our current knowledge of GPI lipid remodelling in pathogenic fungi is limited. In this study, we characterized the role of a putative GPI lipid remodelling protein, designated PerA, in the human pathogenic fungus Aspergillus fumigatus. PerA localizes to the endoplasmic reticulum and loss of PerA leads to striking defects in cell wall integrity. A perA null mutant has decreased conidia production, increased susceptibility to triazole antifungal drugs, and is avirulent in a murine model of invasive pulmonary aspergillosis. Interestingly, loss of PerA increases exposure of β‐glucan and chitin content on the hyphal cell surface, but diminished TNF production by bone marrow‐derived macrophages relative to wild type. Given the structural specificity of fungal GPI‐anchors, which is different from humans, understanding GPI lipid remodelling and PerA function in A. fumigatus is a promising research direction to uncover a new fungal specific antifungal drug target.  相似文献   

17.
The Spitzenkörper (Spk) is a highly dynamic and pleomorphic complex located at the hyphal apex of filamentous fungi. Most studies revealing the structure and behavior of the Spk have been conducted on mature vegetative hyphae of filamentous fungi, including both main leading hyphae and branches. However, these reports do not address whether the observations can be extended to germ tubes. By enhanced phase-contrast video-microscopy and laser scanning confocal microscopy we have analyzed the intracellular changes prior to the appearance of a Spk in germlings of Neurospora crassa. Observations began at the early stages of spore germination and were carried out until a conspicuous Spk could be observed at the apex of germ tubes. Before a Spk could be observed, young germ tubes (<150 μm) displayed a uniform distribution of organelles such as nuclei, mitochondria, and cytoplasmic granules along the length of the cells. Once the germlings started reaching lengths of more than approximately 150 μm, visible organelles experienced a displacement towards the subapical region of the cell and a small exclusion zone free of organelles (0.6 ± 0.3 μm) formed at the apex. The position of this exclusion zone within the apex seemed to determine the germling growth direction, which was highly erratic. Few minutes after it first appeared, upon growth of the germling, the exclusion zone started to become occupied by an accumulation of material that gradually concentrated into a light gray body that we describe as an immature Spk. During this phase the presence of a Spk in the apical dome was not constant. Approximately 30 min later, the immature Spk became more robust and gradually acquired its typical phase-dark appearance, while the growth direction of the germ tube became less wavering. The formation of a mature phase-dark Spk coincided with the stabilization of the growth direction of the germling, therefore suggesting that it is at this stage when the transition from germling to vegetative hypha occurs.  相似文献   

18.
Most models for fungal growth have proposed a directional traffic of secretory vesicles to the hyphal apex, where they temporarily aggregate at the Spitzenkörper before they fuse with the plasma membrane (PM). The PM H+-translocating ATPase (PMA-1) is delivered via the classical secretory pathway (endoplasmic reticulum [ER] to Golgi) to the cell surface, where it pumps H+ out of the cell, generating a large electrochemical gradient that supplies energy to H+-coupled nutrient uptake systems. To characterize the traffic and delivery of PMA-1 during hyphal elongation, we have analyzed by laser scanning confocal microscopy (LSCM) strains of Neurospora crassa expressing green fluorescent protein (GFP)-tagged versions of the protein. In conidia, PMA-1-GFP was evenly distributed at the PM. During germination and germ tube elongation, PMA-1-GFP was found all around the conidial PM and extended to the germ tube PM, but fluorescence was less intense or almost absent at the tip. Together, the data indicate that the electrochemical gradient driving apical nutrient uptake is generated from early developmental stages. In mature hyphae, PMA-1-GFP localized at the PM at distal regions (>120 μm) and in completely developed septa, but not at the tip, indicative of a distinct secretory route independent of the Spitzenkörper occurring behind the apex.  相似文献   

19.
Filamentous actin (F-actin) plays essential roles in filamentous fungi, as in all other eukaryotes, in a wide variety of cellular processes including cell growth, intracellular motility, and cytokinesis. We visualized F-actin organization and dynamics in living Neurospora crassa cells via confocal microscopy of growing hyphae expressing GFP fusions with homologues of the actin-binding proteins fimbrin (FIM) and tropomyosin (TPM-1), a subunit of the Arp2/3 complex (ARP-3) and a recently developed live cell F-actin marker, Lifeact (ABP140 of Saccharomyces cerevisiae). FIM-GFP, ARP-3-GFP, and Lifeact-GFP associated with small patches in the cortical cytoplasm that were concentrated in a subapical ring, which appeared similar for all three markers but was broadest in hyphae expressing Lifeact-GFP. These cortical patches were short-lived, and a subset was mobile throughout the hypha, exhibiting both anterograde and retrograde motility. TPM-1-GFP and Lifeact-GFP co-localized within the Spitzenkörper (Spk) core at the hyphal apex, and were also observed in actin cables throughout the hypha. All GFP fusion proteins studied were also transiently localized at septa: Lifeact-GFP first appeared as a broad ring during early stages of contractile ring formation and later coalesced into a sharper ring, TPM-1-GFP was observed in maturing septa, and FIM-GFP/ARP3-GFP-labeled cortical patches formed a double ring flanking the septa. Our observations suggest that each of the N. crassa F-actin-binding proteins analyzed associates with a different subset of F-actin structures, presumably reflecting distinct roles in F-actin organization and dynamics. Moreover, Lifeact-GFP marked the broadest spectrum of F-actin structures; it may serve as a global live cell marker for F-actin in filamentous fungi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号