首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nearly neutral theory of molecular evolution states that the efficiency of natural selection depends on the effective population size. By using a wide range of multispecies data on nucleotide polymorphism, we have tried to ascertain whether there are any differences in the level of selective constraints of metabolic process genes between Mammals and Drosophila species. The results are consistent with a higher selective constraint in Drosophila than in Mammals, according to the expected under the nearly neutral model: purifying selection seems to be more efficient in species with a larger effective population size.  相似文献   

2.
3.
Mating systems and the efficacy of selection at the molecular level   总被引:1,自引:1,他引:0       下载免费PDF全文
Glémin S 《Genetics》2007,177(2):905-916
Mating systems are thought to play a key role in molecular evolution through their effects on effective population size (N(e)) and effective recombination rate. Because of reduced N(e), selection in self-fertilizing species is supposed to be less efficient, allowing fixation of weakly deleterious alleles or lowering adaptation, which may jeopardize their long-term evolution. Relaxed selection pressures in selfers should be detectable at the molecular level through the analyses of the ratio of nonsynonymous and synonymous divergence, D(n)/D(s), or the ratio of nonsynonymous and synonymous polymorphism, pi(n)/pi(s). On the other hand, selfing reveals recessive alleles to selection (homozygosity effect), which may counterbalance the reduction in N(e). Through population genetics models, this study investigates which process may prevail in natural populations and which conditions are necessary to detect evidence for relaxed selection signature at the molecular level in selfers. Under a wide range of plausible population and mutation parameters, relaxed selection against deleterious mutations should be detectable, but the differences between the two mating systems can be weak. At equilibrium, differences between outcrossers and selfers should be more pronounced using divergence measures (D(n)/D(s) ratio) than using polymorphism data (pi(n)/pi(s) ratio). The difference in adaptive substitution rates between outcrossers and selfers is much less predictable because it critically depends on the dominance levels of new advantageous mutations, which are poorly known. Different ways of testing these predictions are suggested, and implications of these results for the evolution of self-fertilizing species are also discussed.  相似文献   

4.
HANS ELLEGREN 《Molecular ecology》2008,17(21):4586-4596
Genomics profoundly affects most areas of biology, including ecology and evolutionary biology. By examining genome sequences from multiple species, comparative genomics offers new insight into genome evolution and the way natural selection moulds DNA sequence evolution. Functional divergence, as manifested in the accumulation of nonsynonymous substitutions in protein-coding genes, differs among lineages in a manner seemingly related to population size. For example, the ratio of nonsynonymous to synonymous substitution (dN/dS) is higher in apes than in rodents, compatible with Ohta's nearly neutral theory of molecular evolution, which suggests that the fixation of slightly deleterious mutations contributes to protein evolution at an extent negatively correlated with effective population size. While this supports the idea that functional evolution is not necessarily adaptive, comparative genomics is uncovering a role for positive Darwinian selection in 10–40% of all genes in different lineages, estimates that are likely to increase when the addition of more genomes gives increased power. Again, population size seems to matter also in this context, with a higher proportion of fixed amino acid changes representing advantageous mutations in large populations. Genes that are particularly prone to be driven by positive selection include those involved with reproduction, immune response, sensory perception and apoptosis. Genetic innovations are also frequently obtained by the gain or loss of complete gene sequences. Moreover, it is increasingly realized, from comparative genomics, that purifying selection conserves much more than just the protein-coding part of the genome, and this points at an important role for regulatory elements in trait evolution. Finally, genome sequencing using outbred or multiple individuals has provided a wealth of polymorphism data that gives information on population history, demography and marker evolution.  相似文献   

5.
The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life‐history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome‐wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA‐seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes – a marker of the effective population size – in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels.  相似文献   

6.
Most previous studies of the evolution of codon usage bias (CUB) and intronic GC content (iGC) in Drosophila melanogaster were based on between-species comparisons, reflecting long-term evolutionary events. However, a complete picture of the evolution of CUB and iGC cannot be drawn without knowledge of their more recent evolutionary history. Here, we used a polymorphism dataset collected from Zimbabwe to study patterns of the recent evolution of CUB and iGC. Analyzing coding and intronic data jointly with a model which can simultaneously estimate selection, mutational, and demographic parameters, we have found that: (1) natural selection is probably acting on synonymous codons; (2) a constant population size model seems to be sufficient to explain most of the observed synonymous polymorphism patterns; (3) GC is favored over AT in introns. In agreement with the long-term evolutionary patterns, ongoing selection acting on X-linked synonymous codons is stronger than that acting on autosomal codons. The selective differences between preferred and unpreferred codons tend to be greater than the differences between GC and AT in introns, suggesting that natural selection, not just biased gene conversion, may have influenced the evolution of CUB. Interestingly, evidence for non-equilibrium evolution comes exclusively from the intronic data. However, three different models, an equilibrium model with two classes of selected sites and two non-equilibrium models with changes in either population size or mutational parameters, fit the intronic data equally well. These results show that using inadequate selection (or demographic) models can result in incorrect estimates of demographic (or selection) parameters.  相似文献   

7.
The neutral theory of molecular evolution has been instrumental in organizing our thinking about the nature of evolutionary forces shaping variation at the DNA level. More importantly, it has provided empiricists with a strong set of testable predictions and hence, a useful null hypothesis against which to test for the presence of selection. Evidence indicates that the neutral theory cannot explain key features of protein evolution nor patterns of biased codon usage in certain species. Whereas we now have a reasonable model of selection acting on synonymous changes in Drosophila, protein evolution remains poorly understood. Despite limitations in the applicability of the neutral theory, it is likely to remain an integral part of the quest to understand molecular evolution.  相似文献   

8.
H. Akashi 《Genetics》1995,139(2):1067-1076
Patterns of codon usage and ``silent'''' DNA divergence suggest that natural selection discriminates among synonymous codons in Drosophila. ``Preferred'''' codons are consistently found in higher frequencies within their synonymous families in Drosophila melanogaster genes. This suggests a simple model of silent DNA evolution where natural selection favors mutations from unpreferred to preferred codons (preferred changes). Changes in the opposite direction, from preferred to unpreferred synonymous codons (unpreferred changes), are selected against. Here, selection on synonymous DNA mutations is investigated by comparing the evolutionary dynamics of these two categories of silent DNA changes. Sequences from outgroups are used to determine the direction of synonymous DNA changes within and between D. melanogaster and Drosophila simulans for five genes. Population genetics theory shows that differences in the fitness effect of mutations can be inferred from the comparison of ratios of polymorphism to divergence. Unpreferred changes show a significantly higher ratio of polymorphism to divergence than preferred changes in the D. simulans lineage, confirming the action of selection at silent sites. An excess of unpreferred fixations in 28 genes suggests a relaxation of selection on synonymous mutations in D. melanogaster. Estimates of selection coefficients for synonymous mutations (3.6 <|N(e)s| < 1.3) in D. simulans are consistent with the reduced efficacy of natural selection (|N(e)s| < 1) in the three- to sixfold smaller effective population size of D. melanogaster. Synonymous DNA changes appear to be a prevalent class of weakly selected mutations in Drosophila.  相似文献   

9.
The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla—with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed.  相似文献   

10.
The nearly neutral theory of molecular evolution predicts that the efficacy of both positive and purifying selection is a function of the long-term effective population size (N(e)) of a species. Under this theory, the efficacy of natural selection should increase with N(e). Here, we tested this simple prediction by surveying ~1.5 to 1.8 Mb of protein coding sequence in the two subspecies of the European rabbit (Oryctolagus cuniculus algirus and O. c. cuniculus), a mammal species characterized by high levels of nucleotide diversity and N(e) estimates for each subspecies on the order of 1 × 10(6). When the segregation of slightly deleterious mutations and demographic effects were taken into account, we inferred that >60% of amino acid substitutions on the autosomes were driven to fixation by positive selection. Moreover, we inferred that a small fraction of new amino acid mutations (<4%) are effectively neutral (defined as 0 < N(e)s < 1) and that this fraction was negatively correlated with a gene's expression level. Consistent with models of recurrent adaptive evolution, we detected a negative correlation between levels of synonymous site polymorphism and the rate of protein evolution, although the correlation was weak and nonsignificant. No systematic X chromosome-autosome difference was found in the efficacy of selection. For example, the proportion of adaptive substitutions was significantly higher on the X chromosome compared with the autosomes in O. c. algirus but not in O. c. cuniculus. Our findings support widespread positive and purifying selection in rabbits and add to a growing list of examples suggesting that differences in N(e) among taxa play a substantial role in determining rates and patterns of protein evolution.  相似文献   

11.
Both the overall rate of nucleotide substitution and the relative proportions of synonymous and non-synonymous substitutions are predicted to vary between species that differ in effective population size (Ne). Our understanding of the genetic processes underlying these lineage-specific differences in molecular evolution is still developing. Empirical analyses indicate that variation in substitution rates and patterns caused by differences in Ne is often substantial, however, and must be accounted for in analyses of molecular evolution.  相似文献   

12.
The evolutionary transition from outcrossing to selfing can have important genomic consequences. Decreased effective population size and the reduced efficacy of selection are predicted to play an important role in the molecular evolution of the genomes of selfing species. We investigated evidence for molecular signatures of the genomic selfing syndrome using 66 species of Primula including distylous (outcrossing) and derived homostylous (selfing) taxa. We complemented our comparative analysis with a microevolutionary study of P. chungensis, which is polymorphic for mating system and consists of both distylous and homostylous populations. We generated chloroplast and nuclear genomic data sets for distylous, homostylous, and distylous–homostylous species and identified patterns of nonsynonymous to synonymous divergence (dN/dS) and polymorphism (πN/πS) in species or lineages with contrasting mating systems. Our analysis of coding sequence divergence and polymorphism detected strongly reduced genetic diversity and heterozygosity, decreased efficacy of purifying selection, purging of large-effect deleterious mutations, and lower rates of adaptive evolution in samples from homostylous compared with distylous populations, consistent with theoretical expectations of the genomic selfing syndrome. Our results demonstrate that self-fertilization is a major driver of molecular evolutionary processes with genomic signatures of selfing evident in both old and relatively young homostylous populations.  相似文献   

13.
High levels of synonymous substitutions among alleles of the surface antigen SerH led to the hypothesis that Tetrahymena thermophila has a tremendously large effective population size, one that is greater than estimated for many prokaryotes (Lynch, M., and J. S. Conery. 2003. Science 302:1401-1404.). Here we show that SerH is unusual as there are substantially lower levels of synonymous variation at five additional loci (four nuclear and one mitochondrial) characterized from T. thermophila populations. Hence, the effective population size of T. thermophila, a model single-celled eukaryote, is lower and more consistent with estimates from other microbial eukaryotes. Moreover, reanalysis of SerH polymorphism data indicates that this protein evolves through a combination of vertical transmission of alleles and concerted evolution of repeat units within alleles. SerH may be under balancing selection due to a mechanism analogous to the maintenance of antigenic variation in vertebrate immune systems. Finally, the dual nature of ciliate genomes and particularly the amitotic divisions of processed macronuclear genomes may make it difficult to estimate accurately effective population size from synonymous polymorphisms. This is because selection and drift operate on processed chromosomes in macronuclei, where assortment of alleles, disruption of linkage groups, and recombination can alter the genetic landscape relative to more canonical eukaryotic genomes.  相似文献   

14.
A fundamental challenge in population genetics and molecular evolution is to understand the forces shaping the patterns of genetic diversity within and among species. Among them, mating systems are thought to have important influences on molecular diversity and genome evolution. Selfing is expected to reduce effective population size, Ne, and effective recombination rates, directly leading to reduced polymorphism and increased linkage disequilibrium compared with outcrossing. Increased isolation between populations also results directly from selfing or indirectly from evolutionary changes, such as small flowers and low pollen output, leading to greater differentiation of molecular markers than under outcrossing. The lower effective recombination rate increases the likelihood of hitch-hiking, further reducing within-deme diversity of selfers and thus increasing their genetic differentiation. There are also indirect effects on molecular evolutionary processes. Low Ne reduces the efficacy of selection; in selfers, selection should thus be less efficient in removing deleterious mutations. The rarity of heterozygous sites in selfers leads to infrequent action of biased conversion towards GC, which tends to increase sequences' GC content in the most highly recombining genome regions of outcrossers. To test these predictions in plants, we used a newly developed sequence polymorphism database to investigate the effects of mating system differences on sequence polymorphism and genome evolution in a wide set of plant species. We also took into account other life-history traits, including life form (whether annual or perennial herbs, and woody perennial) and the modes of pollination and seed dispersal, which are known to affect enzyme and DNA marker polymorphism. We show that among various life-history traits, mating systems have the greatest influence on patterns of polymorphism.  相似文献   

15.
16.
The nearly-neutral-mutation theory predicts that populations with small effective sizes will undergo more rapid molecular evolution than populations with very large effective sizes. In particular, Ohta (1976) predicted that populations of Hawaiian Drosophila that are known to have small population sizes and to experience repeated population bottlenecks due to founder events should show a more rapid rate of molecular evolution relative to the rate of molecular evolution of species with large population sizes such as the continental Drosophila. In this paper we test this prediction by comparing the rate of molecular evolution in two closely related lineages of Hawaiian Drosophila that have experienced very different evolutionary histories. Both lineages belong to the planitibia subgroup of Hawaiian Drosophila. The beta lineage (which includes D. silvestris, D. planitibia, D. differens, and D. hemipeza) has undergone repeated founder events, as evidenced by their geographic distribution and behavioral biology. On the other hand, evidence on geographic distribution and behavior indicates that the alpha lineage (which includes D. melanocephala, D. cyrtaloma, and D. neoperkinsi) has arisen from large ancestral populations without founder effects. The mitochondrial DNA data reveal that, within a lineage, the rate of molecular evolution is rather uniform, while all comparisons between the two lineages show that the rate of molecular evolution in the beta lineage is three times that of the alpha lineage. This analysis strongly supports the predictions made by Ohta.  相似文献   

17.
Genes that have undergone positive or diversifying selection are likely to be associated with adaptive divergence between species. One indicator of adaptive selection at the molecular level is an excess of amino acid replacement fixed differences per replacement site relative to the number of synonymous fixed differences per synonymous site (omega = K(a)/K(s)). We used an evolutionary expressed sequence tag (EST) approach to estimate the distribution of omega among 304 orthologous loci between Arabidopsis thaliana and A. lyrata to identify genes potentially involved in the adaptive divergence between these two Brassicaceae species. We find that 14 of 304 genes (approximately 5%) have an estimated omega > 1 and are candidates for genes with increased selection intensities. Molecular population genetic analyses of 6 of these rapidly evolving protein loci indicate that, despite their high levels of between-species nonsynonymous divergence, these genes do not have elevated levels of intraspecific replacement polymorphisms compared to previously studied genes. A hierarchical Bayesian analysis of protein-coding region evolution within and between species also indicates that the selection intensities of these genes are elevated compared to previously studied A. thaliana nuclear loci.  相似文献   

18.
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole‐genome sequencing of numerous species, both prokaryotes and eukaryotes, genome‐wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole‐genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome‐sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome‐sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance.  相似文献   

19.
Mitochondrial DNA (mtDNA) genomes generally evolve rapidly in animals, but considerable variation in the rates of evolution of mtDNA occurs among taxa. Higher levels of mutation will tend to increase the amount of polymorphism, which should also scale with population size, but there are mixed signals from previous studies on the evolutionary outcomes of the interactions of these processes. The copepod Tigriopus californicus provides an interesting model in which to study the evolution of mtDNA because it has high levels of divergence among populations and there is the suggestion that this divergence could be involved in reproductive isolation. This species also appears to have an elevated mtDNA substitution rate, but previous studies did not provide an accurate measurement. This article examines the rate of mtDNA substitution versus nuclear substitution in T. californicus and finds that the mtDNA rate for synonymous sites averages 55-fold higher, a level that exceeds the rates found in most other invertebrates. Levels of polymorphism are also examined in both mtDNA and nuclear genes, and it is shown that the effective population size of mtDNA genes is much lower than that of nuclear genes. In addition, no correlation between polymorphism in mtDNA and nuclear genes is found across populations, which suggest factors other than demography may shape polymorphism in this species. The results from this study suggest that mtDNA is evolving at a very rapid rate in this copepod species, and this could increase the likelihood that mtDNA evolution is involved in the generation of reproductive isolation.  相似文献   

20.
T. Ohta  H. Tachida 《Genetics》1990,126(1):219-229
In order to clarify the nature of "near neutrality" in molecular evolution and polymorphism, extensive simulation studies were performed. Selection coefficients of new mutations are assumed to be small so that both random genetic drift and selection contribute to determining the behavior of mutants. The model also incorporates normally distributed spatial fluctuation of selection coefficients. If the system starts from "average neutrality," it will move to a better adapted state, and most new mutations will become "slightly deleterious." Monte Carlo simulations have indicated that such adaptation is attained, but that the rate of such "progress" is very low for weak selection. In general, the larger the population size, the more effective the selection becomes. Also, as selection becomes weaker, the behavior of the mutants approaches that of completely neutral genes. Thus, the weaker the selection, the smaller is the effect of population size on mutant dynamics. Increase of heterozygosity with population size is very pronounced for subdivided populations. The significance of these results is discussed in relation to various observed facts on molecular evolution and polymorphism, such as generation-time dependency and overdispersion of the molecular clock, or contrasting patterns of DNA and protein polymorphism among some closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号