首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work has identified LDL receptor-related family members, Lrp5 and Lrp6, as co-receptors for the transduction of Wnt signals. Our analysis of mice carrying mutations in both Lrp5 and Lrp6 demonstrates that the functions of these genes are redundant and are essential for gastrulation. Lrp5;Lrp6 double homozygous mutants fail to establish a primitive streak, although the anterior visceral endoderm and anterior epiblast fates are specified. Thus, Lrp5 and Lrp6 are required for posterior patterning of the epiblast, consistent with a role in transducing Wnt signals in the early embryo. Interestingly, Lrp5(+/-);Lrp6(-/-) embryos die shortly after gastrulation and exhibit an accumulation of cells at the primitive streak and a selective loss of paraxial mesoderm. A similar phenotype is observed in Fgf8 and Fgfr1 mutant embryos and provides genetic evidence in support of a molecular link between the Fgf and Wnt signaling pathways in patterning nascent mesoderm. Lrp5(+/-);Lrp6(-/-) embryos also display an expansion of anterior primitive streak derivatives and anterior neurectoderm that correlates with increased Nodal expression in these embryos. The effect of reducing, but not eliminating, Wnt signaling in Lrp5(+/-);Lrp6(-/-) mutant embryos provides important insight into the interplay between Wnt, Fgf and Nodal signals in patterning the early mouse embryo.  相似文献   

2.
3.
The inner ear develops from an ectodermal placode that is specified by inductive signals from the adjacent neurectoderm and underlying mesoderm. In chick, fibroblast growth factor (Fgf)-19 is expressed in mesoderm underlying the presumptive otic placode, and human FGF19 induces expression of otic markers in a tissue explant containing neural plate and surface ectoderm. We show here that mouse Fgf15 is the sequence homolog of chick and human Fgf19/FGF19. In addition, we show that FGF15, like FGF19, is sufficient to induce expression of otic markers in a chick explant assay, suggesting that these FGFs are orthologs. Mouse embryos lacking Fgf15, however, do not have otic abnormalities at E9.5-E10.5, suggesting that Fgf15 is not uniquely required for otic induction or early patterning of the otocyst. To compare FGF15 and FGF19 signaling components and assess where signals potentially redundant with FGF15 might function, we determined the expression patterns of Fgf15 and Fgf19. Unlike Fgf19, Fgf15 is not expressed in mesoderm underlying the presumptive otic placode, but is expressed in the adjacent neurectoderm. Fgfr4, which encodes the likely receptor for both FGF19 and FGF15, is expressed in the neurectoderm of both species, and is also expressed in the mesoderm only in chick. These results suggest the hypotheses that during otic induction, FGF19 signals in either an autocrine fashion to the mesoderm or a paracrine fashion to the neurectoderm, whereas FGF15 signals in an autocrine fashion to the neurectoderm. Thus, the FGFs that signal to the neurectoderm are the best potential candidates for redundancy with FGF15 during mouse otic development.  相似文献   

4.
5.
6.
BACKGROUND: In Xenopus embryos, fibroblast growth factors (FGFs) and secreted inhibitors of bone morphogenetic protein (BMP)-mediated signalling have been implicated in neural induction. The precise roles, if any, that these factors play in neural induction in amniotes remains to be established. RESULTS: To monitor the initial steps of neural induction in the chick embryo, we developed an in vitro assay of neural differentiation in epiblast cells. Using this assay, we found evidence that neural cell fate is specified in utero, before the generation of the primitive streak or Hensen's node. Early epiblast cells expressed both Bmp4 and Bmp7, but the expression of both genes was downregulated as cells acquired neural fate. During prestreak and gastrula stages, exposure of epiblast cells to BMP4 activity in vitro was sufficient to block the acquisition of neural fate and to promote the generation of epidermal cells. Fgf3 was also found to be expressed in the early epiblast, and ongoing FGF signalling in epiblast cells was required for acquisition of neural fate and for the suppression of Bmp4 and Bmp7 expression. CONCLUSIONS: The onset of neural differentiation in the chick embryo occurs in utero, before the generation of Hensen's node. Fgf3, Bmp4 and Bmp7 are each expressed in prospective neural cells, and FGF signalling appears to be required for the repression of Bmp expression and for the acquisition of neural fate. Subsequent exposure of epiblast cells to BMPs, however, can prevent the generation of neural tissue and induce cells of epidermal character.  相似文献   

7.
Early neural patterning in vertebrates involves signals that inhibit anterior (A) and promote posterior (P) positional values within the nascent neural plate. In this study, we have investigated the contributions of, and interactions between, retinoic acid (RA), Fgf and Wnt signals in the promotion of posterior fates in the ectoderm. We analyze expression and function of cyp26/P450RAI, a gene that encodes retinoic acid 4-hydroxylase, as a tool for investigating these events. Cyp26 is first expressed in the presumptive anterior neural ectoderm and the blastoderm margin at the late blastula. When the posterior neural gene hoxb1b is expressed during gastrulation, it shows a strikingly complementary pattern to cyp26. Using these two genes, as well as otx2 and meis3 as anterior and posterior markers, we show that Fgf and Wnt signals suppress expression of anterior genes, including cyp26. Overexpression of cyp26 suppresses posterior genes, suggesting that the anterior expression of cyp26 is important for restricting the expression of posterior genes. Consistent with this, knock-down of cyp26 by morpholino oligonucleotides leads to the anterior expansion of posterior genes. We further show that Fgf- and Wnt-dependent activation of posterior genes is mediated by RA, whereas suppression of anterior genes does not depend on RA signaling. Fgf and Wnt signals suppress cyp26 expression, while Cyp26 suppresses the RA signal. Thus, cyp26 has an important role in linking the Fgf, Wnt and RA signals to regulate AP patterning of the neural ectoderm in the late blastula to gastrula embryo in zebrafish.  相似文献   

8.
Two independent signals are necessary for neural crest (NC) induction in Xenopus: a Bmp signal, which must be partially attenuated by Bmp antagonists, and a separate signal mediated by either a canonical Wnt or an Fgf. The mesoderm underlying the NC-forming region has been proposed as a source of this second signal. Wnt8 and Fgf8a are expressed in this tissue around the time of NC induction and are therefore good candidate NC inducers. Loss-of-function studies indicate that both of these ligands are necessary to specify the NC; however, it is unclear whether these signaling molecules are operating in the same or in parallel pathways to generate the NC. Here, we describe experiments addressing this outstanding question. We show that although Wnt8 expression can restore NC progenitors in Fgf8a-deficient embryos, Fgf8a is unable to rescue NC formation in Wnt8-depleted embryos. Moreover, the NC-inducing activity of Fgf8a in neuralized explants is strongly repressed by co-injection of a Wnt8 or a beta-catenin morpholino, suggesting that the activity of these two signaling molecules is linked. Consistent with these observations, Fgf8a is a potent inducer of Wnt8 in both whole embryos and animal explants, and Fgf8a knockdown results in a dramatic loss of Wnt8 expression in the mesoderm. We propose that Fgf8a induces NC indirectly through the activation of Wnt8 in the paraxial mesoderm, which in turn promotes NC formation in the overlying ectoderm primed by Bmp antagonists.  相似文献   

9.
Abstract Embryonic stem (ES) cells have the potential to differentiate into all cell types of the adult body, and could allow regeneration of damaged tissues. The challenge is to alter differentiation toward functional cell types or tissues by directing ES cells to a specific fate. Efforts have been made to understand the molecular mechanisms that are required for the formation of the different germ layers and tissues from ES cells, and these mechanisms appear to be very similar in the mouse embryo. Differentiation toward mesoderm and mesoderm derivatives such as cardiac tissue or hemangioblasts has been demonstrated; however, the roles of Activin A/Nodal, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) signaling in the early patterning of ES cell-derived pan-mesoderm and anterior visceral endoderm (aVE) have not been reported yet. We therefore analyzed the roles of Activin A/Nodal, BMP, and FGF signaling in the patterning of ES cell-derived mesoderm as well as specification of the aVE by using a dual ES cell differentiation system combining a loss-of-function with a gain-of-function approach. We found that Activin A or Nodal directed the nascent mesoderm toward axial mesoderm and mesendoderm, while Bmp4 was inducing posterior and extraembryonic mesoderm at the expense of anterior primitive streak cells. FGF signaling appeared to have an important role in mesoderm differentiation by allowing an epithelial-to-mesenchymal transition of the newly formed mesoderm cells that would lead to their further patterning. Moreover, inhibition of FGF signaling resulted in increased expression of axial mesoderm markers. Additionally, we revealed that the formation of aVE cells from ES cells requires FGF-dependent Activin A/Nodal signaling and the attenuation of Bmp4 signaling.  相似文献   

10.
Embryonic stem (ES) cells are becoming a popular model of in vitro neurogenesis, as they display intrinsic capability to generate neural progenitors that undergo the known steps of in vivo neural development. These include the acquisition of distinct regional fates, which depend on growth factors and signals that are present in the culture medium. The control of the intracellular signaling that is active at different steps of ES cell neuralization, even when cells are cultured in chemically defined medium, is complicated by the endogenous production of growth factors. However, this endogenous production has been poorly investigated so far. To address this point, we performed a high‐throughput analysis of the expression of morphogens during mouse ES cell neuralization in minimal medium. We found that during their neuralization, ES cells increased the expression of members of Wnt, Fibroblast Growth Factor (FGF), and BMP families. Conversely, the expression of Activin/Nodal and Shh ligands was low in early steps of neuralization. In this experimental condition, neural progenitors and neurons generated by ES cells expressed a gene expression profile that was consistent with a midbrain identity. We found that endogenous BMP and Wnt signaling, but not FGF signaling, synergistically affected ES cell neural patterning, by turning off a profile of dorsal/telencephalic gene expression. Double BMP and Wnt inhibition allowed neuralized ES cells to sequentially activate key genes of cortical differentiation. Our findings are consistent with a novel synergistic effect of Wnt and BMP endogenous signaling of ES cells in inhibiting a cortical differentiation program. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 66–79, 2015  相似文献   

11.
12.
Wnt/beta-catenin signaling plays fundamental roles in body patterning in many invertebrate and vertebrate species, by acting as a key regulator of germ layer and body axis specification. This article focuses on the roles of Wnt/beta-catenin signaling in mouse early embryos, which exhibit a unique mode of development compared to non-mammalian vertebrates. Current experimental evidence suggests that Wnt/beta-catenin signaling is not essential for patterning embryos before implantation. However, Wnt/beta-catenin signaling regulates critical developmental events after implantation, namely the patterning of visceral endoderm, the induction of primitive streak, and the formation of anterior neural ectoderm. While Wnt/beta-catenin signaling regulates the body axis formation in both mouse and frog, the mode of its action is significantly diverged between these two vertebrate species.  相似文献   

13.
Here, we report in vitro generation of Math1+ cerebellar granule cell precursors and Purkinje cells from ES cells by using soluble patterning signals. When neural progenitors induced from ES cells in a serum-free suspension culture are subsequently treated with BMP4 and Wnt3a, a significant proportion of these neural cells become Math1+. The induced Math1+ cells are mitotically active and express markers characteristic of granule cell precursors (Pax6, Zic1, and Zipro1). After purification by FACS and coculture with postnatal cerebellar neurons, ES cell-derived Math1+ cells exhibit typical features of neurons of the external granule cell layer, including extensive motility and a T-shaped morphology. Interestingly, differentiation of L7+/Calbindin-D28K+ neurons (characteristic of Purkinje cells) is induced under similar culture conditions but exhibits a higher degree of enhancement by Fgf8 rather than by Wnt3a. This is the first report of in vitro recapitulation of early differentiation of cerebellar neurons by using the ES cell system.  相似文献   

14.
Induction of definitive endoderm (DE) cells is a prerequisite for the whole process of embryonic stem (ES) cells differentiating into hepatic or pancreatic progenitor cells. We have established an efficient method to induce mouse ES cell-derived DE cells in suspension embryonic body (EB) culture. Similar to previous studies, mouse ES cell-derived DE cells, which were defined as Cxcr4(+) c-Kit(+) , Cxcr4(+) E-cadherin(+) cells or Cxcr4(+) PDGFRa(-) cells, could be induced in the serum-free EBs at Day 4 of induction. The activations of Wnt, Nodal, and FGF signaling pathways in differentiating EBs promoted DE cell differentiation, while activation of BMP4 signaling inhibited the process. In the present study, we found that chemical activation of canonical Wnt signaling pathway by LiCl could synergize with Activin A-mediated Nodal signaling pathway to promote induction of DE cells, and inhibition of Bmp4 signaling by Noggin along with Activin A/LiCl further improved the efficiency of DE cell differentiation. The derived DE cells were proved for their capacities to become hepatic progenitor cells or pancreatic progenitor cells. In conclusion, we significantly improved the efficiency of generating mouse ES cell-derived DE cells by combined Activin A/LiCl/Noggin treatment. Our work will be greatly helpful to generate ES cell-derived hepatic cells and ES cell-derived pancreatic cells for future regenerative medicine.  相似文献   

15.
The most obvious phenotype of Ft/+ mice is a syndactyly of fore limbs characterised by a fusion of the tips of digits 1 to 4. The tempospatial expression of genes involved in limb development revealed that patterning of Ft/+ limb buds is not affected by the mutation. However, an upregulation of Bmp4 in the anterior-distal region of the limb bud at d12.0 of embryonic development is accompanied by a loss of Fgf8 expression in the distal part of the AER. Downstream target genes of Bmp action such as Msx1 and 2 are upregulated. This induction of the signalling cascade indicates ectopic expression of functional Bmp4. Nevertheless, analysis of physical parameters of bones from adult mice revealed a reduction of the bone mass of the autopod. The data suggest a negative effect of Bmp4 on Fgf8 expression and a positive influence on the induction of bone elements.  相似文献   

16.
Bone morphogenetic protein (Bmp) signaling is critical for the development and patterning of the mouse pituitary from the initial induction of Rathke's pouch to cell specification in the anterior lobe. We examined the regulation of Bmp signaling during pituitary development by analyzing null embryos for noggin, a Bmp 2 and 4 antagonist. Noggin is expressed in the ventral diencephalon during Rathke's pouch induction, in the underlying cartilage plate during cell specification and in the adult anterior pituitary gland. Noggin null embryos have a variable pituitary phenotype, which ranges from a rostrally displaced Rathke's pouch to induction of secondary pituitary tissue. While cell specification in the anterior pituitary appears normal, patterning in the ventral diencephalon is disrupted; Bmp4 activity is expanded resulting in Fibroblast growth factor 10 repression and in a rostral shift in the boundary between the Bmp4 and Sonic hedgehog expression domains. The expanded domain of Bmp4 activity also results in additional invaginations of oral ectoderm and can shift the position of Rathke's pouch or create secondary pituitary tissue. This work demonstrates the importance of attenuating the activity of Bmp signaling during pituitary induction in order to maintain the proper balance of signaling factors necessary for pituitary organogenesis.  相似文献   

17.
Prechordal mesendoderm is formed in response to Nodal and maternal beta-Catenin signaling and is regulated by signals from anterior endoderm and chordamesoderm. Prechordal mesendodermal cells are involved in neural induction and in anteroposterior and dorsoventral neural patterning. Inhibitors of Wnt and BMP growth factors secreted by prechordal mesendoderm mediate neural induction and anteroposterior and dorsoventral patterning, whereas SHH and TGF betas mediate dorsoventral patterning.  相似文献   

18.
Getting your head around Hex and Hesx1: forebrain formation in mouse   总被引:1,自引:0,他引:1  
An increasing amount of evidence suggests that in mouse there are two signalling centres required for the formation of a complete neural axis: the anterior visceral endoderm (AVE), and the node and its derivatives. Embryological and genetic studies suggest that the AVE has a head-inducing activity. In contrast, the node appears to act first as a head inducer in synergy with the AVE initiating anterior neural patterning at early stages of mouse development, and later, node derivatives are necessary for maintenance and embellishment of anterior neural character. Hex and Hesx1 are homeobox genes that are expressed in relevant tissues involved in anterior patterning. The analysis of the Hex and Hesx1 mutant mice has revealed that the lack of these genes has little or no effect on the early steps of anterior neural induction. However, both genes are required subsequently for the proper expansion of the forebrain region. We suggest that disturbance in the specification of an Fgf8 signalling centre in the anterior neural ridge may account for the anterior defects observed in these mutants.  相似文献   

19.
20.
Pluripotent embryonic stem (ES) cells must select between alternative fates of self-replication and lineage commitment during continuous proliferation. Here, we delineate the role of autocrine production of fibroblast growth factor 4 (Fgf4) and associated activation of the Erk1/2 (Mapk3/1) signalling cascade. Fgf4 is the major stimulus activating Erk in mouse ES cells. Interference with FGF or Erk activity using chemical inhibitors or genetic ablations does not impede propagation of undifferentiated ES cells. Instead, such manipulations restrict the ability of ES cells to commit to differentiation. ES cells lacking Fgf4 or treated with FGF receptor inhibitors resist neural and mesodermal induction, and are refractory to BMP-induced non-neural differentiation. Lineage commitment potential of Fgf4-null cells is restored by provision of FGF protein. Thus, FGF enables rather than antagonises the differentiation activity of BMP. The key downstream role of Erk signalling is revealed by examination of Erk2-null ES cells, which fail to undergo either neural or mesodermal differentiation in adherent culture, and retain expression of pluripotency markers Oct4, Nanog and Rex1. These findings establish that Fgf4 stimulation of Erk1/2 is an autoinductive stimulus for na?ve ES cells to exit the self-renewal programme. We propose that the Erk cascade directs transition to a state that is responsive to inductive cues for germ layer segregation. Consideration of Erk signalling as a primary trigger that potentiates lineage commitment provides a context for reconciling disparate views on the contribution of FGF and BMP pathways during germ layer specification in vertebrate embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号