首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is now abundant evidence that integral membrane protein function may be modulated by the physical properties of membrane lipids. The intestinal brush border membrane represents a membrane system highly specialized for nutrient absorption and, thus, provides an opportunity to study the interaction between integral membrane transport proteins and their lipid environment. We have previously demonstrated that alterations in this environment may modulate the function of the sodium-dependent glucose transporter in terms of its affinity for glucose. In this communication we report that membrane lipid-protein interactions are distinctly different for the proline transport proteins. Maximal transport rates for L-proline by either the neutral brush border or imino transport systems are reduced 10-fold when the surrounding membrane environment is made more fluid over the physiological range that exists along the crypt-villus axis. Furthermore, in microvillus membrane vesicles prepared from enterocytes isolated from along the crypt-villus axis a similar gradient exists in the functional activity of these transport systems. This would imply that either the functional activity of these transporters are regulated by membrane physical properties or that the synthesis and insertion of these proteins is coordinated in concert with membrane physical properties as the enterocyte migrates up the crypt-villus axis.  相似文献   

2.
In most applications of biotechnology and downstream processing proteins are exposed to fluid stresses in various flow configurations which often lead to the formation of unwanted protein aggregates. In this paper we present physical degradation experiments for proteins under well-defined flow conditions in a four-roll apparatus. The flow field was characterized numerically by computational fluid dynamics (CFD) and experimentally by particle image velocimetry (PIV). The local shear strain rate as well as the local shear and elongation rate was used to characterize the hydrodynamic stress environment acting on the proteins. Lysozyme was used as a model protein and subjected to well-defined fluid stresses in high and low stress environment. By using in situ turbidity measurements during stressing the aggregate formation was monitored directly in the fluid flow. An increase in absorbance at 350 nm was attributed to a higher content of visible particles (>1 μm). In addition to lysozyme, the formation of aggregates was confirmed for two larger proteins (bovine serum albumin and alcohol dehydrogenase). Thus, the presented experimental setup is a helpful tool to monitor flow-induced protein aggregation with high reproducibility. For instance, screening experiments for formulation development of biopharmaceuticals for fill and finish operations can be performed in the lab-scale in a short time-period if the stress distributions in the application are transferred and applied in the four-roll mill.  相似文献   

3.
Cell migration is a central component of the metastatic cascade requiring a concerted action of ion channels and transporters (migration-associated transportome), cytoskeletal elements and signalling cascades. Ion transport proteins and aquaporins contribute to tumour cell migration and invasion among other things by inducing local volume changes and/or by modulating Ca2+ and H+ signalling. Targeting cell migration therapeutically bears great clinical potential, because it is a prerequisite for metastasis. Ion transport proteins appear to be attractive candidate target proteins for this purpose because they are easily accessible as membrane proteins and often overexpressed or activated in cancer. Importantly, a number of clinically widely used drugs are available whose anticipated efficacy as anti-tumour drugs, however, has now only begun to be evaluated.  相似文献   

4.
Zucker SD 《Biochemistry》2001,40(4):977-986
The mechanism (or mechanisms) whereby fatty acids and other amphipathic compounds are transported from the plasma membrane to intracellular sites of biotransformation remains poorly defined. In an attempt to better characterize the role of cytosolic binding proteins in this process, a kinetic model of intermembrane ligand transport was developed in which diffusional transfer of ligand between membrane and protein is assumed. The model was tested by utilizing stopped-flow techniques to monitor the transfer of the fluorescent fatty acid analogue, 12-anthroyloxy stearate (12-AS), between model membrane vesicles. Studies were conducted in the presence or absence of bovine serum albumin (BSA), liver fatty acid-binding protein (L-FABP), and intestinal fatty acid-binding protein (I-FABP) in order to determine the effect of soluble proteins on the rate of intermembrane ligand transfer. As predicted by the model, the initial velocity of 12-AS arrival at the acceptor membrane increases in an asymptotic manner with the acceptor concentration. Furthermore, probe transfer velocity was found to decline asymptotically with increasing concentrations of BSA or L-FABP, proteins that exhibit diffusional transfer kinetics. This observation was found to hold true independent of whether donor or acceptor vesicles were preequilibrated with the protein. In contrast, 12-AS transfer velocity exhibited a linear correlation with the concentration of I-FABP, a protein that is thought to transport fatty acids, at least in part, via a collisional mechanism. Taken together, these findings validate the derived kinetic model of protein-mediated ligand transport and further suggest that the mechanism of ligand-protein interaction is a key determinant of the effect of cytosolic proteins on intracellular ligand diffusion.  相似文献   

5.
Urinary flow is not constant but in fact highly variable, altering the mechanical forces (shear stress, stretch, and pressure) exerted on the epithelial cells of the nephron as well as solute delivery. Nitric oxide (NO) and superoxide (O(2)(-)) play important roles in various processes within the kidney. Reductions in NO and increases in O(2)(-) lead to abnormal NaCl and water absorption and hypertension. In the last few years, luminal flow has been shown to be a regulator of NO and O(2)(-) production along the nephron. Increases in luminal flow enhance fluid, Na, and bicarbonate transport in the proximal tubule. However, we know of no reports directly addressing flow regulation of NO and O(2)(-) in this segment. In the thick ascending limb, flow-stimulated NO and O(2)(-) formation has been extensively studied. Luminal flow stimulates NO production by nitric oxide synthase type 3 and its translocation to the apical membrane in medullary thick ascending limbs. These effects are mediated by flow-induced shear stress. In contrast, flow-induced stretch and NaCl delivery stimulate O(2)(-) production by NADPH oxidase in this segment. The interaction between flow-induced NO and O(2)(-) is complex and involves more than one simply scavenging the other. Flow-induced NO prevents flow from increasing O(2)(-) production via cGMP-dependent protein kinase in thick ascending limbs. In macula densa cells, shear stress increases NO production and this requires that the primary cilia be intact. The role of luminal flow in NO and O(2)(-) production in the distal tubule is not known. In cultured inner medullary collecting duct cells, shear stress enhances nitrite accumulation, a measure of NO production. Although much progress has been made on this subject in the last few years, there are still many unanswered questions.  相似文献   

6.
Auxin transport: a field in flux   总被引:9,自引:0,他引:9  
Polar auxin transport is crucial for plant growth and development. Auxin moves between plant cells through a combination of membrane diffusion and carrier-mediated transport. Several classes of membrane proteins that facilitate auxin uptake and efflux have recently been identified in Arabidopsis. The relative contribution to auxin transport made by the different facilitators and by membrane diffusion is unclear. In this Opinion article, we assess the significance of auxin diffusion versus carrier-mediated transport and then discuss the physiological importance of the transport facilitators within the context of the multiple trans-cellular auxin fluxes recently described in the Arabidopsis root apex.  相似文献   

7.
The mechanical stress due to shear flow has profound effects on cell proliferation, transport, gene expression, and apoptosis. The mechanisms for flow sensing and transduction are unclear, but it is postulated that fluid flow pulls upon the apical surface, and the resulting stress is eventually transmitted through the cytoskeleton to adhesion plaques on the basal surface. Here we report a direct observation of this flow-induced stress in the cytoskeleton in living cells using a parallel plate microfluidic chip with a fluorescence resonance energy transfer (FRET)-based mechanical stress sensor in actinin. The sensing cassette was genetically inserted into the cytoskeletal host protein and transfected into Madin-Darby canine kidney cells. A shear stress of 10 dyn/cm(2) resulted in a rapid increase in the FRET ratio indicating a decrease in stress across actinin with flow. The effect was reversible, and cells were able to respond to repeated stimulation and showed adaptive changes in the cytoskeleton. Flow-induced Ca(2+) elevation did not affect the response, suggesting that flow-induced changes in actinin stress are insensitive to intracellular Ca(2+) level. The reduction in FRET ratio suggests actin filaments are under normal compression in the presence of flow shear stress due to changes in cell shape, and/or actinin is not in series with actin. Treatment with cytochalasin-D that disrupts F-actin reduced prestress and the response to flow. The FRET/flow method is capable of resolving changes of stress in multiple proteins with optical spatial resolution and time resolution >1 Hz. This promises to provide insight into the force distribution and transduction in all cells.  相似文献   

8.
On the basis of the currently accepted model for the cell membrane structure, a physico-chemical model for mediated transport is developed and solved for the case of polar non-electrolyte migration through the cell membrane. The model considers the interstitial space defined by the transport protein subunits to be the migration pathway for polar solutes. A Langmuir-type adsorption equilibrium is assumed at the interfaces and a multicomponent diffusion mechanism of solute and water is postulated within the migration pathway, where the polar residues of the transport protein represent another component of the system. Membrane selectivity is governed by the adsorption constants, which are shown to affect strongly the kinetics of transport. Isosmotic transport and the volume change of the cell are important features incorporated in the model, which is shown to fulfill the peculiar properties of facilitated diffusion systems. It is concluded that the same type of pathway can be used for the transport of other polar solutes through existing or induced hydrophilic channels, for which a similar approach is suggested.  相似文献   

9.
S H Lee  N S Cohen  A J Jacobs  A F Brodie 《Biochemistry》1979,18(11):2232-2239
Membrane vesicles from Mycobacterium phlei contain carrier proteins for proline, glutamine, and glutamic acid. The transport of proline is Na+ dependent and required substrate oxidation. A proline carrier protein was solubilized from the membrane vesicles by treatment with cholate and Triton X-100. Electron microscopic observation of the detergent-treated membrane vesicles showed that they are closed structures. The detergent-extracted proteins were purified by means of sucrose density gradient centrifugation, followed by gel filtration and isoelectric focusing. A single protein with a molecular weight of 20,000 +/- 1000 was found on polyacrylamide gel electrophoresis. Reconstitution of proline transport was demonstrated when the purified protein was incubated with the detergent-extracted membrane vesicles. This reconstituted transport system was specific for proline and required substrate oxidation and Na+. The purified protein was also incorporated into liposomes, and proline uptake was demonstrated when energy was supplied as a membrane potential introduced by K+ diffusion via valinomycin. The uptake of proline was Na+ dependent and was inhibited by uncoupler or by sulfhydryl reagents.  相似文献   

10.
Choi S  Jeon J  Yang JS  Kim S 《Proteins》2008,71(1):68-80
Symmetry plays significant roles in protein structure and function. Particularly, symmetric interfaces are known to act as switches for two-state conformational change. Membrane proteins often undergo two-state conformational change during the transport process of ion channels or the active/inactive transitions in receptors. Here, we provide the first comprehensive analyses of internal repeat symmetry in membrane proteins. We examined the known membrane protein structures and found that, remarkably, nearly half of them have internal repeat symmetry. Moreover, we found that the conserved cores of these internal repeats are positioned at the interface of symmetric units when they are mapped on structures. Because of the large sequence divergence that occurs between internal repeats, the inherent symmetry present in protein sequences often has only been detected after structure determination. We therefore developed a sensitive procedure to predict the internal repeat symmetry from sequence information and identified 4653 proteins that are likely to have internal repeat symmetry.  相似文献   

11.
Cell surfaces are often heterogeneous with respect to the lateral distribution and mobility of membrane components. Because lateral mobility is related to membrane structure, measurement of a particular component's local diffusion coefficient within a distinct surface region provides useful information about the formation and maintenance of that region. Many structurally interesting cell surface features can be described as narrow tubular projections from the body of the cell. In a companion paper, we consider the thin "tethers" that can be mechanically drawn from the red blood cell membrane, and we measure the transport of fluorescent integral proteins from the surface of the cell body onto the tether. In this paper we present an analysis to describe the surface diffusion of membrane particles from a spherical shell onto a thin cylindrical process. Provision is made for different rates of diffusion within the two morphologically distinct regions. The relative role of each region in controlling the diffusive flux between regions is determined primarily by a single dimensionless parameter. This parameter incorporates the ratio of the two diffusion coefficients as well as the dimensions of each region. The analysis can be applied to a fluorescence photobleaching experiment in which the extended process is bleached. If the dimensions of the spherical cell body and the cylindrical extension are known, then the diffusion coefficients of both regions can be determined from the experimental fluorescence recovery curve.  相似文献   

12.
This review focuses on our studies over the past ten years which reveal that the mitochondrial inner membrane is a fluid-state rather than a solid-state membrane and that all membrane proteins and redox components which catalyze electron transport and ATP synthesis are in constant and independent diffusional motion. The studies reviewed represent the experimental basis for therandom collision model of electron transport. We present five fundamental postulates upon which the random collision model of mitochondrial electron transport is founded: (1) All redox components areindependent lateral diffusants; (2) Cytochromec diffuses primarily inthree dimensions; (3) Electron transport is adiffusion-coupled kinetic process; (4) Electron transport is amulticollisional, obstructed, long-range diffusional process; (5) The rates of diffusion of the redox components have a direct influence on the overall kinetic process of electron transport and can berate limiting, as indiffusion control. The experimental rationales and the results obtained in testing each of the five postulates of the random collision model are presented. In addition, we offer the basic concepts, criteria and experimental strategies that we believe are essential in considering the significance of the relationship between diffusion and electron transport. Finally, we critically explore and assess other contemporary studies on the diffusion of inner membrane components related to electron transport including studies on: rotational diffusion, immobile fractions, complex formation, dynamic aggregates, and rates of diffusion. Review of all available data confirms the random collision model and no data appear to exist that contravene it. It is concluded that mitochondrial electron transport is a diffusion-based random collision process and that diffusion has an integral and controlling affect on electron transport.  相似文献   

13.
The mobility of photosynthetic proteins represents an important factor that affects light-energy conversion in photosynthesis. The specific feature of photosynthetic proteins mobility can be currently measured in vivo using advanced microscopic methods, such as fluorescence recovery after photobleaching which allows the direct observation of photosynthetic proteins mobility on a single cell level. The heterogeneous organization of thylakoid membrane proteins results in heterogeneity in protein mobility. The thylakoid membrane contains both, protein-crowded compartments with immobile proteins and fluid areas (less crowded by proteins), allowing restricted diffusion of proteins. This heterogeneity represents an optimal balance as protein crowding is necessary for efficient light-energy conversion, and protein mobility plays an important role in the regulation of photosynthesis. The mobility is required for an optimal light-harvesting process (e.g., during state transitions), and also for transport of proteins during their synthesis or repair. Protein crowding is then a key limiting factor of thylakoid membrane protein mobility; the less thylakoid membranes are crowded by proteins, the higher protein mobility is observed. Mobility of photosynthetic proteins outside the thylakoid membrane (lumen and stroma/cytosol) is less understood. Cyanobacterial phycobilisomes attached to the stromal side of the thylakoid can move relatively fast. Therefore, it seems that stroma with their active enzymes of the Calvin–Benson cycle, are a more fluid compartment in comparison to the rather rigid thylakoid lumen. In conclusion, photosynthetic protein diffusion is generally slower in comparison to similarly sized proteins from other eukaryotic membranes or organelles. Mobility of photosynthetic proteins resembles restricted protein diffusion in bacteria, and has been rationalized by high protein crowding similar to that of thylakoids.  相似文献   

14.
Highway to the inner nuclear membrane: rules for the road   总被引:1,自引:0,他引:1  
To enter the nucleus a protein must be chaperoned by a transport factor through the nuclear pore complex or it must be small enough to pass through by diffusion. Although these principles have long described the nuclear import of soluble proteins, recent evidence indicates that they also apply to the import of integral inner nuclear membrane proteins. Here we develop a set of rules that might govern the transport of proteins to the inner nuclear membrane.  相似文献   

15.
The redistribution of membrane proteins on the surface of cells is a prevalent feature of differentiation in a variety of cells. In most cases the mechanism responsible for such redistribution is poorly understood. Two potential mechanisms for the redistribution of surface proteins are: (1) passive diffusion coupled with trapping, and (2) active translocation. We have studied the process of membrane protein redistribution for the PH-20 protein of guinea pig sperm, a surface protein required for sperm binding to the egg zona pellucida (P. Primakoff, H. Hyatt, and D. G. Myles (1985). J. Cell Biol. 101, 2239-2244). PH-20 protein is localized to the posterior head plasma menbrane of the mature sperm cell. Following the exocytotic acrosome reaction, PH-20 protein moves into the newly incorporated inner acrosomal membrane (IAM), placing it in a position favorable for a role in binding sperm to the egg zona pellucida (D. G. Myles, and P. Primakoff (1984), J. Cell Biol. 99, 1634-1641). To analyze the mechanistic basis for this protein migration, we have used fluorescence microscopy and digital image processing to characterize PH-20 protein migration in individual cells. PH-20 protein was observed to move against a concentration gradient in the posterior head plasma membrane. This result argues strongly against a model of passive diffusion followed by trapping in the IAM, and instead suggests that an active process serves to concentrate PH-20 protein toward the boundary separating the posterior head and IAM regions. A transient gradient of PH-20 concentration observed in the IAM suggests that once PH-20 protein reaches the IAM, it is freely diffusing. Additionally, we observed that migration of PH-20 protein was calcium dependent.  相似文献   

16.
Cell migration plays vital roles in many biologically relevant processes such as tissue morphogenesis and cancer metastasis, and it has fascinated biophysicists over the past several decades. However, despite an increasing number of studies highlighting the orchestration of proteins involved in different signaling pathways, the functional roles of lipid membranes have been essentially overlooked. Lipid membranes are generally considered to be a functionless two-dimensional matrix of proteins, although many proteins regulating cell migration gain functions only after they are recruited to the membrane surface and self-organize their functional domains. In this review, we summarize how the logistical recruitment and release of proteins to and from lipid membranes coordinates complex spatiotemporal molecular processes. As predicted from the classical framework of the Smoluchowski equation of diffusion, lipid/protein membranes serve as a 2D reaction hub that contributes to the effective and robust regulation of polarization and migration of cells involving several competing pathways.  相似文献   

17.
Cell migration is a highly controlled essential cellular process, often dysregulated in tumour cells, dynamically controlled by the architecture of the cell. Studies involving cellular fractionation and microarray profiling have previously identified functionally distinct mRNA populations specific to cellular organelles and architectural compartments. However, the interaction between the translational machinery itself and cellular structures is relatively unexplored. To help understand the role for the compartmentalization and localized protein synthesis in cell migration, we have used scanning confocal microscopy, immunofluorescence and a novel ribopuromycylation method to visualize translating ribosomes. In the present study we show that eIFs (eukaryotic initiation factors) localize to the leading edge of migrating MRC5 fibroblasts in a process dependent on TGN (trans-Golgi network) to plasma membrane vesicle transport. We show that eIF4E and eIF4GI are associated with the Golgi apparatus and membrane microdomains, and that a proportion of these proteins co-localize to sites of active translation at the leading edge of migrating cells.  相似文献   

18.
ExbB acts as a chaperone-like protein to stabilize TonB in the cytoplasm   总被引:19,自引:5,他引:14  
The TonB protein is required to transduce energy from the cytoplasmic membrane to outer membrane transport proteins of Gram-negative bacteria. Two accessory proteins, ExbB and ExbD, are required for TonB function and it has been suggested that TonB and ExbBD form a complex in the membrane. In this paper we demonstrate that there are two spatially distinct, functional interactions between ExbBD and TonB. First, there is an interaction between ExbBD and the N-terminal signal-like peptide of TonB, probabiy the formation of a stable complex in the membrane. Second, ExbB interacts with TonB in the cytoplasm. This interaction involves the domain of TonB that is normally periplasmic. Thus, this is a transient interaction which occurs during the synthesis and/or localization of TonB, implying a chaperone-like role for ExbB. The transmembrane topology of ExbB was shown to be consistent with this role.  相似文献   

19.
Two types of proteins are discussed in their role of facilitating the transport of maltose and sn-glycerol-3-phosphate in E. coli. The first protein is the receptor for phage δ, known to be an outer membrane protein. By facilitating the diffusion of maltose and the higher maltodextrins through the outer membrane the effect of the δ receptor is to decrease the Km of the transport system without influencing the Vmax of substrate flux. The second protein is a periplasmic protein that is induced by growth on glycerol and is essential for transport of sn-glycerol-3-phosphate in whole cells but not in membrane vesicles. This protein has solely been identified by the use of a two-dimensional polyacrylamide gel electrophoresis of periplasmic proteins in wild-type and mutants defective in sn-glycerol-3-phosphate transport.  相似文献   

20.
The Escherichia coli twin-arginine translocation (Tat) system transports fully folded and assembled proteins across the inner membrane into the periplasmic space. Traditionally, in vitro protein translocation studies have been performed using gel-based transport assays. This technique suffers from low time resolution, and often, an inability to distinguish between different steps in a continuously occurring translocation process. To address these limitations, we have developed an in vitro FRET-based assay that reports on an early step in the Tat translocation process in real-time. The natural Tat substrate pre-SufI was labeled with Alexa532 (donor), and the fluorescent protein mCherry (acceptor) was fused to the C terminus of TatB or TatC. The colored Tat proteins were easily visible during purification, enabling identification of a highly active inverted membrane vesicle (IMV) fraction yielding transport rates with NADH almost an order of magnitude faster than previously reported. When pre-SufI was bound to the translocon, FRET was observed for both Tat proteins. FRET was diminished upon addition of nonfluorescent pre-SufI, indicating that the initial binding step is reversible. When the membranes were energized with NADH, the FRET signal was lost after a short delay. These data suggest a model in which a Tat cargo initially associates with the TatBC complex, and an electric field gradient is required for the cargo to proceed to the next stage of transport. This cargo migration away from the TatBC complex requires a significant fraction of the total transport time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号