首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The supply chains found in modern manufacturing are often complex and long. The resulting opacity poses a significant barrier to the measurement and minimization of energy consumption and therefore to the implementation of sustainable manufacturing. The current article investigates whether the adoption of additive manufacturing (AM) technology can be used to reach transparency in terms of energy and financial inputs to manufacturing operations. AM refers to the use of a group of electricity‐driven technologies capable of combining materials to manufacture geometrically complex products in a single digitally controlled process step, entirely without molds, dies, or other tooling. The single‐step nature affords full measurability with respect to process energy inputs and production costs. However, the parallel character of AM (allowing the contemporaneous production of multiple parts) poses previously unconsidered problems in the estimation of manufacturing resource consumption. This research discusses the implementation of a tool for the estimation of process energy flows and costs occurring in the AM technology variant direct metal laser sintering. It is demonstrated that accurate predictions can be made for the production of a basket of sample parts. Further, it is shown that, unlike conventional processes, the quantity and variety of parts demanded and the resulting ability to fully utilize the available machine capacity have an impact on process efficiency. It is also demonstrated that cost minimization in additive manufacturing may lead to the minimization of process energy consumption, thereby motivating sustainability improvements.  相似文献   

2.
3.
Delayed Product Differentiation (DPD) can reduce the manufacturing complexities arising due to the proliferation of products variety. A new optimization model constructs the optimum layout of delayed differentiation assembly lines for a mix of products to be manufactured by the same system and optimizes the position of the differentiation points. This model employs a classification tool (Cladistics) used in biological analysis and modifies it for use in planning DPD assembly lines configurations in order to incorporate the assembly precedence constraints, required production rates of different product variants and existing production capacity of work stations. The optimum layout configuration ensures that the quantities required of different products are produced on the same line; while achieving balance, minimizing duplication of stations and maximizing the overall system utilization. The developed model has been applied to a group of automobile engine accessories normally assembled on different lines. The use of Cladistics to analyze product variants that are candidates for delayed assembly is an original approach for designing the assembly line layout and identifying the best differentiation points. It also helps rationalize the design of product variants and their features to further delay their assembly differentiation and achieve economy of scale without affecting their functionality.  相似文献   

4.
There is an increasing interest in the generation of Fc-fusion molecules to exploit the effector functions of Fc and the fusion partner, towards improving the therapeutic potential. The Fc-fusion molecules have unique structural and functional attributes that impart various advantages. However, the manufacturing of Fc-fusion molecules possesses certain challenges in the biopharmaceutical development. The fusion of unnaturally occurring two or more domains in a construct can pose problems for proper folding and are prone to aggregation and degradation. Reshuffling of disulfide bridges represents a posttranslational event that affects folding. This can play a critical role in the correct structure of a molecule and leads to structural heterogeneity in biotherapeutics; it may also impact the in vivo biological activities, safety, and efficacy of the biopharmaceutical. Our work presents an investigation case of a doublet band, as observed only in nonreducing sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) for a bi-specific, N- and C-terminal Fc-fusion molecule. Other characterization and orthogonal methods from the analytical panel did not indicate the presence of two distinct species, including the orthogonal CE-SDS (Caliper Lab Chip GXII). Therefore, it was necessary to determine if the phenomenon was an analytical artifact or a real variant of our Fc-fusion molecule. With the comprehensive mass spectrometry-based characterization, we were able to determine that the doublet band was related to the reshuffling of one disulfide bridge in one of the fused domains. Our work illustrates the application of nonreducing peptide mapping by mass spectrometry to characterize and identify disulfide variants in a complex N- and C-terminal Fc-fusion molecule, and further adoption to monitor the disulfide structural variants in the intermediate process samples to drive the manufacturing of a consistent product with the desired quality attributes.  相似文献   

5.
Microheterogeneity of monoclonal antibodies (mAbs) can impact their activity and stability. Formation of charge variants is considered as the most important source of the microheterogeneity. In particular, controlling the content of the acidic species is often of major importance for the production process and regulatory approval of therapeutic proteins. In this study, the preferential precipitation process was developed for reducing the content of acidic variants in mAb downstream pools. The process design was preceded by the determination of phase behavior of mAb variants in the presence of different precipitants. It was shown that the presence of polyethylene glycol (PEG) in protein solutions favored precipitation of acidic variants of mAbs. Precipitation yield was influenced by the variant composition in the mAb feed solutions, the concentration of the precipitant and the protein, and the ionic strength of the solutions. To improve yield, multistage precipitation was employed, where the precipitate was recycled to the precipitation process. The final product was a mixture of supernatants pooled together from the recycling steps. Such an approach can be potentially used either instead or in a combination with chromatography for adjusting the acidic variant content of mAbs, which can benefit in improvement in throughput and reduction in manufacturing costs.  相似文献   

6.
Production planning in flexible manufacturing may require the solution of a large-scale discrete-event dynamic stochastic optimization problem, due to the complexity of the system to be optimized, and to the occurrence of discrete events (new orders and hard failures). The production planning problem is here approached for a multistage multipart-type manufacturing shop, where each work cell can share its processing time among the different types of parts. The solution of this problem is obtained by an open-loop-feedback control strategy, updated each time a new event occurs. At each event time, two coupled problems are solved: 1) a product-order scheduling problem, conditioned on estimated values of the production capacities of all component work cells; and 2) a production-capacity planning problem, conditioned on predefined sequences of the product orders to be processed. In particular, the article aims at defining a production planning procedure that integrates both analytical tools, derived from mathematical programming, and knowledge-based rules, coming from experience. The objective is to formulate a hybrid (knowledge-based/analytical) planning architecture, and to analyze its use for multicell multipart-type manufacturing systems.  相似文献   

7.
This paper presents a hierarchical approach to scheduling flexible manufacturing systems (FMSs) that pursues multiple performance objectives and considers the process flexibility of incorporating alternative process plans and resources for the required operations. The scheduling problem is solved at two levels: the shop level and the manufacturing system level. The shop level controller employs a combined priority index developed in this research to rank shop production orders in meeting multiple scheduling objectives. To overcome dimensional complexity and keep a low level of work-in-process inventory, the shop controller first selects up to three production orders with the highest ranking as candidates and generates all possible release sequences for them, with or without multitasking. These sequences are conveyed to the manufacturing system controller, who then performs detailed scheduling of the machines in the FMS using a fixed priority heuristic for routing parts of multiple types while considering alternative process plans and resources for the operations. The FMS controller provides feedback to the shop controller with a set of suggested detailed schedules and projected order completion times. On receiving these results, the shop controller further evaluates each candidate schedule using a multiple-objective function and selects the best schedule for execution. This allows multiple performance objectives of an FMS to be achieved by the integrated hierarchical scheduling approach.  相似文献   

8.
The stability of the hybridoma cell line MN12 in a long-term homogeneous continuous culture was studied using a panel of analytical methods. These include two flow cytometry methods, for the determination of relative cytoplasmic and membrane IgG content. In addition, the antibody production was determined by an ELISA, and the metabolic state of the cells was determined by means of glucose consumption and lactate production.These results indicate a possible selection of variants of MN12 hybridoma cells with an overall aerobic metabolism, but with a higher glucose consumption rate and a higher lactate production rate. These variants are mainly characterized by a different membrane IgG content and cytoplasmic antibody content. These changes may possibly be affected by the culture age.  相似文献   

9.
Monoclonal antibodies (mAbs) have been well established as potent therapeutic agents and are used to treat many different diseases. During cell culture production, antibody charge variants can be generated by cleavage of heavy chain (HC) C‐terminal lysine and proline amidation. Differences in levels of charge variants during manufacturing process changes make it challenging to demonstrate process comparability. In order to reduce heterogeneity and achieve consistent product quality, we generated and expressed antibodies with deletion of either HC C‐terminal lysine (‐K) or lysine and glycine (‐GK). Interestingly, clones that express antibodies lacking HC C‐terminal lysine (‐K) had considerably lower specific productivities compared to clones that expressed either wild type antibodies (WT) or antibodies lacking HC glycine and lysine (‐GK). While no measurable differences in antibody HC and LC mRNA levels, glycosylation and secretion were observed, our analysis suggests that the lower specific productivity of clones expressing antibody lacking HC C‐terminal lysine was due to slower antibody HC synthesis and faster antibody degradation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:786–794, 2017  相似文献   

10.
Monoclonal antibodies (mAbs) are widely applied as highly specific and efficient therapeutic agents for various medical conditions, including cancer, inflammatory and autoimmune diseases. As protein production in cellular systems inherently generates a multitude of molecular variants, manufacturing of mAbs requires stringent control in order to ensure safety and efficacy of the drugs. Moreover, monitoring of mAb variants in the course of the fermentation process may allow instant tuning of process parameters to maintain optimal cell culture conditions. Here, we describe a fast and robust workflow for the characterization of mAb variants in fermentation broth. Sample preparation is minimal in that the fermentation broth is shortly centrifuged before dilution and HPLC-MS analysis in a short 15-min gradient run. In a single analysis, N-glycosylation and truncation variants of the expressed mAb are identified at the intact protein level. Simultaneously, absolute quantification of mAb content in fermentation broth is achieved. The whole workflow features excellent robustness as well as retention time and peak area stability. Additional enzymatic removal of N-glycans enables determination of mAb glycation levels, which are subsequently considered in relative N-glycoform quantification to correct for isobaric galactosylation. Several molecular attributes of the expressed therapeutic protein may thus be continuously monitored to ensure the desired product profile. Application of the described workflow in an industrial environment may therefore substantially enhance in-process control in mAb production, as well as targeted biosimilar development.  相似文献   

11.
Electroplating lines are totally automated manufacturing systems that are used to cover parts with a coat of metal. They consist of a set of tanks between which the parts to be treated are transported by one or several hoists. Scheduling the movements of these hoists is commonly called a hoist scheduling problem (HSP) in the literature. But the assumptions and constraints that must be taken into account greatly depend on the production environment (physical system, manufacturing specifications, and management policies). Consequently, there exist several classes of HSPs. The systematic frameworks usually used to classify deterministic scheduling problems do not allow distinguishing between these various kinds of HSPs. Therefore, identifying the scope of each published work and comparing the various proposed scheduling methods turn out to be difficult. Thus, this article presents notation for scheduling problems in electroplating systems, to make the specification of problem types and the identification of studied problem instances easier. An associated typology gives a survey of the literature and demonstrates the usefulness of the proposed classification scheme.  相似文献   

12.
Decentralised or ‘redistributed’ manufacturing represents an attractive choice for production of some cell and gene therapies (CGTs), in particular personalised therapies. Decentralised manufacturing splits production into various locations or regions and in doing so, imposes organisational changes on the structure of a company. This confers a significant advantage by democratising supply, creating jobs without geographical restriction to the central hub and allowing a more flexible response to external pressures and demands. This comes with challenges that need to be addressed including, a reduction in oversight, decision making and control by central management which can be critical in maintaining quality in healthcare product manufacturing. The unwitting adoption of poor business strategies at an early stage in development has the potential to undermine the market success of otherwise promising products. To maximise the probability of realising the benefits that decentralised manufacturing of CGTs has to offer, it is important to examine alternative operational paradigms to learn from their successes and to avoid their failures. Whilst no other situation is quite the same as CGTs, some illustrative examples of established manufacturing paradigms are described. Each of these shares a unique attribute with CGTs which aids understanding of how decentralised manufacturing might be implemented for CGTs in a similar manner. In this paper we present a collection of paradigms that can be drawn on in formulating a roadmap to success for decentralised production of CGTs.  相似文献   

13.
There is an imperative need for expression systems allowing the efficient and robust manufacturing of high quality glycoproteins. In the present work, HEK-293 cells stably expressing interferon-α2b were further engineered with the insertion of the yeast pyruvate carboxylase 2 gene. In batch cultures, marked reductions in lactate and ammonia production were observed compared to the parental cell clone. Although the maximum specific growth rate remained unchanged, the altered metabolism led to a 2-fold increase in maximum cell density and 33% increase in the integral of viable cell concentration and interferon production yield. The underlying metabolic changes were further investigated using various 13C-labeled substrates and measuring the resulting lactate mass isotopomer distributions. Simultaneous metabolite and isotopomer balancing allowed the accurate determination of key intracellular fluxes. Such detailed and quantitative knowledge about the central carbon metabolism of the cells is instrumental to further support the development of high-yield fed-batch processes.  相似文献   

14.
Modern production systems exhibit a high degree of resource sharing that can lead to deadlock conditions. Deadlock arises when some parts remain indefinitely blocked because each of them requests access to a resource held by some other parts. One of the tasks of the control system lies in preventing such situations from occurring by proper resource management. This article addresses the deadlock problem for an important class of production facilities, that is, flexible assembly systems, that can perform both manufacturing or assembly operations. In particular, we develop an approach to deadlock avoidance based on a supervisory control that works by inhibiting or enabling the events involving resource allocation. The article proposes two supervisors characterized by easy implementation, efficiency, and flexibility in resource management. The analysis of some case studies, performed by discrete event simulation, confirms the effectiveness of the approach.  相似文献   

15.
Spectrum of microorganisms vegetated in the large bowel of patients with allergic diseases was investigated. The index of constancy C was used for characterization of the microbial population. 80 patients (31 adults and 49 children < 14 years) were examined. Most prominent changes in obligatory and facultative parts of microflora were revealed in children. Serological typing of 108 cultures of enterobacteria isolated in children under examination with disbiosis showed variety of serogroups that can testify to the presence of pathogenic variants.  相似文献   

16.
The requirement for complex therapeutic proteins has resulted in mammalian cells, especially CHO cells, being the dominant host for recombinant protein manufacturing. In creating recombinant CHO cell lines, the expression vectors integrate into various parts of the genome leading to variable levels of expression and stability of protein production. This makes mammalian cell line development a long and laborious process. Therefore, with the intention to accelerate process development of recombinant protein production in CHO systems, UCOEs are utilized to diminish instability of production by maintaining an open chromatin surrounding in combination with MTX amplification. Chromosome painting and FISH analysis were performed to provide detailed molecular evaluation on the location of amplified genes and its relationship to the productivity and stability of the amplified cell lines. In summary, cell lines generated with vectors containing UCOEs retained stable GFP expression with MTX present (but instability was observed in the absence of MTX). UCOE cell lines displayed a higher frequency of integration into >1 chromosome than non‐UCOE group. Cell populations were more homogenous in terms of transgene location at the end of Long‐term culture (LTC). Overall our findings suggest variation in eGFP fluorescence may be attributed to changes in transgene integration profile over LTC.  相似文献   

17.
We have constructed vectors for inducible expression of genes in Lactobacillus sakei and Lactobacillus plantarum. The key elements of these vectors are a regulatable promoter involved in the production of the bacteriocins sakacin A and sakacin P and the genes encoding the cognate histidine protein kinase and response regulator that are necessary to activate this promoter upon induction by a peptide pheromone. The vectors are built up of cassettes that permit easy exchange of all parts through restriction enzyme digestion and ligation. Using beta-glucuronidase as a reporter enzyme, variants of these vectors were compared with each other, and with a corresponding system based on genes involved in the production of nisin. Several of the new vectors permitted tightly controlled and efficient expression of beta-glucuronidase in both L. sakei and L. plantarum.  相似文献   

18.
Allele frequencies at four milk protein loci were studied in five modern and 17 old Nordic cattle breeds in order to reveal variants that are characteristic for these populations. The B allele of CSN3, which has been associated with improved manufacturing properties of milk, showed significantly lower frequencies in modern production breeds than in old breeds of interest for conservation purposes. Characteristic frequencies of CSN1S1 (C), CSN2 (A2) and CSN3 (B) were found in Icelandic cattle, Swedish Mountain cattle, Northern Finncattle and Western Fjord cattle, which indicate a common origin of these populations. Further comparisons of allele frequencies in old Nordic breeds suggest sorting of these breeds into two groups with a northern and southern geographic location.  相似文献   

19.
20.

Purpose

A scalable life cycle inventory (LCI) model of a permanent magnet electrical machine, containing both design and production data, has been established. The purpose is to contribute with new and easy-to-use data for LCA of electric vehicles by providing a scalable mass estimation and manufacturing inventory for a typical electrical automotive traction machine. The aim of this article (part I of two publications) is to present the machine design, the model structure, and an evaluation of the models’ mass estimations.

Methods

Data for design and production of electrical machines has been compiled from books, scientific papers, benchmarking literature, expert interviews, various specifications, factory records, and a factory site visit. For the design part, one small and one large reference machine were constructed in a software tool, which linked the machines’ maximum ability to deliver torque to the mass of its electromagnetically active parts. Additional data for remaining parts was then gathered separately to make the design complete. The two datasets were combined into one model, which calculates the mass of all motor subparts from an input of maximum power and torque. The range of the model is 20–200 kW and 48–477 Nm. The validity of the model was evaluated through comparison with seven permanent magnet electrical traction machines from established brands.

Results and discussion

The LCI model was successfully implemented to calculate the mass content of 20 different materials in the motor. The models’ mass estimations deviate up to 21% from the examples of real motors, which still falls within expectations for a good result, considering a noticeable variability in design, even for the same machine type and similar requirements. The model results form a rough and reasonable median in comparison to the pattern created by all data points. Also, the reference motors were assessed for performance, showing that the electromagnetic efficiency reaches 96–97%.

Conclusions

The LCI model relies on thorough design data collection and fundamental electromagnetic theory. The selected design has a high efficiency, and the motor is suitable for electric propulsion of vehicles. Furthermore, the LCI model generates representative mass estimations when compared with recently published data for electrical traction machines. Hence, for permanent magnet-type machines, the LCI model may be used as a generic component estimation for LCA of electric vehicles, when specific data is lacking.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号