首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate in vitro the protective effect of commercial probiotic strains (Bifidobacterium lactis Bb12 and Lactobacillus rhamnosus LGG) alone and in combination on the adhesion of pathogenic strains as Salmonella, Clostridium, and Escherichia coli to pig intestinal mucus obtained from different intestinal regions. In combination, probiotic strains enhanced each other’s adhesion, mainly in large intestinal mucus. Treatment of intestinal mucus with Bb12 and LGG, alone or in combination, significantly reduced (P < 0.05) the adhesion of the tested pathogens. The ability to inhibit pathogen adhesion appears to depend on the specific probiotics and pathogens and on the mucosal site. B. lactis Bb12 and L. rhamnosus LGG in combination revealed a better ability to inhibit adhesion of all pathogens tested to pig intestinal mucus than probiotic strains. Probiotic combinations could be useful for counteracting disease-associated aberrations in intestinal microbiota. Specific protective probiotics could be selected for particular pig pathogens. Probiotic strains from human origin and intended for human use also adhere to pig intestinal mucus and are able to displace and inhibit pathogens.  相似文献   

2.
Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit to the host. Bacteriocin production has often been mooted as a desirable probiotic trait and, in specific cases, has been shown to promote probiotic survival within the gastrointestinal tract, contribute to the control of pathogens and even influence host gene expression in the gut. However, it is not clear what proportion of probiotic strains routinely found in commercial products produces bacteriocins, and additionally, it is not known which bacteriocins are produced most frequently. To address this, we conducted a culture-based assessment of the bacteriocinogenic ability of bacterial strains found in a variety of commercially available probiotic products. We detected eight bacteriocin-producing isolates from 16 tested products. Interestingly, in all cases, the isolates were Lactobacillus acidophilus, and the bacteriocin produced was identified as the narrow spectrum class II bacteriocin, lactacin B. The apparent absence of other bacteriocin-producing strains from across these products suggests a lack of heterogeneity in bacteriocin production within probiotic products and suggests that bacteriocin production is not being optimally harnessed as a probiotic trait.  相似文献   

3.
Probiotic bacteria are microorganisms that benefit the host by preventing or ameliorating disease. However, little information is known regarding the scientific rationale for using probiotics as alternative medicine. The purpose of this paper is to investigate the mechanisms of probiotic beneficial effects on intestinal cell homeostasis. We now report that one such probiotic, Lactobacillus rhamnosus GG (LGG), prevents cytokine-induced apoptosis in two different intestinal epithelial cell models. Culture of LGG with either mouse or human colon cells activates the anti-apoptotic Akt/protein kinase B. This model probiotic also inhibits activation of the pro-apoptotic p38/mitogen-activated protein kinase by tumor necrosis factor, interleukin-1alpha, or gamma-interferon. Furthermore, products recovered from LGG culture broth supernatant show concentration-dependent activation of Akt and inhibition of cytokine-induced apoptosis. These observations suggest a novel mechanism of communication between probiotic microorganisms and epithelia that increases survival of intestinal cells normally found in an environment of pro-apoptotic cytokines.  相似文献   

4.
The beneficial contribution of commensal bacteria to host health and homeostasis led to the concept that exogenous non-pathogenic bacteria called probiotics could be used to limit disease caused by pathogens. However, despite recent progress using gnotobiotic mammal and invertebrate models, mechanisms underlying protection afforded by commensal and probiotic bacteria against pathogens remain poorly understood. Here we developed a zebrafish model of controlled co-infection in which germ-free zebrafish raised on axenic living protozoa enabled the study of interactions between host and commensal and pathogenic bacteria. We screened enteric fish pathogens and identified Edwardsiella ictaluri as a virulent strain inducing a strong inflammatory response and rapid mortality in zebrafish larvae infected by the natural oro-intestinal route. Using mortality induced by infection as a phenotypic read-out, we pre-colonized zebrafish larvae with 37 potential probiotic bacterial strains and screened for survival upon E. ictaluri infection. We identified 3 robustly protective strains, including Vibrio parahaemolyticus and 2 Escherichia coli strains. We showed that the observed protective effect of E. coli was not correlated with a reduced host inflammatory response, nor with the release of biocidal molecules by protective bacteria, but rather with the presence of specific adhesion factors such as F pili that promote the emergence of probiotic bacteria in zebrafish larvae. Our study therefore provides new insights into the molecular events underlying the probiotic effect and constitutes a potentially high-throughput in vivo approach to the study of the molecular basis of pathogen exclusion in a relevant model of vertebrate oro-intestinal infection.  相似文献   

5.
Colonization of the infant gut by microorganisms over the first year of life is crucial for development of a balanced immune response. Early alterations in the gastrointestinal microbiota of neonates has been linked with subsequent development of asthma and atopy in older children. Here we describe high-resolution culture-independent analysis of stool samples from 6-month old infants fed daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG) or placebo in a double-blind, randomized Trial of Infant Probiotic Supplementation (TIPS). Bacterial community composition was examined using a high-density microarray, the 16S rRNA PhyloChip, and the microbial assemblages of infants with either high or low LGG abundance were compared. Communities with high abundance of LGG exhibited promotion of phylogenetically clustered taxa including a number of other known probiotic species, and were significantly more even in their distribution of community members. Ecologically, these aspects are characteristic of communities that are more resistant to perturbation and outgrowth of pathogens. PhyloChip analysis also permitted identification of taxa negatively correlated with LGG abundance that have previously been associated with atopy, as well as those positively correlated that may prove useful alternative targets for investigation as alternative probiotic species. From these findings we hypothesize that a key mechanism for the protective effect of LGG supplementation on subsequent development of allergic disease is through promotion of a stable, even, and functionally redundant infant gastrointestinal community.  相似文献   

6.
Bacterial lectins are carbohydrate-binding adhesins that recognize glycoreceptors in the gut mucus and epithelium of hosts. In this study, the contribution of lectin-like activities to adhesion of Lactobacillus mucosae LM1 and Lactobacillus johnsonii PF01, which were isolated from swine intestine, were compared to those of the commercial probiotic Lactobacillus rhamnosus GG. Both LM1 and PF01 strains have been reported to have good adhesion ability to crude intestinal mucus of pigs. To confirm this, we quantified their adhesion to porcine gastric mucin and intestinal porcine enterocytes isolated from the jejunum of piglets (IPEC-J2). In addition, we examined their carbohydrate-binding specificities by suspending bacterial cells in carbohydrate solutions prior to adhesion assays. We found that the selected carbohydrates affected the adherences of LM1 to IPEC-J2 cells and of LGG to mucin. In addition, compared to adhesion to IPEC-J2 cells, adhesion to mucin by both LM1 and LGG was characterized by enhanced specific recognition of glycoreceptor components such as galactose, mannose, and N-acetylglucosamine. Hydrophobic interactions might make a greater contribution to adhesion of PF01. A similar adhesin profile between a probiotic and a pathogen, suggest a correlation between shared pathogen–probiotic glycoreceptor recognition and the ability to exclude enteropathogens such as Escherichia coli K88 and Salmonella Typhimurium KCCM 40253. These findings extend our understanding of the mechanisms of the intestinal adhesion and pathogen-inhibition abilities of probiotic Lactobacillus strains.  相似文献   

7.
Probiotic bacteria can modulate immune responses in the host gastrointestinal tract to promote health. The genomics era has provided novel opportunities for the discovery and characterization of bacterial probiotic effector molecules that elicit specific responses in the intestinal system. Furthermore, nutrigenomic analyses of the response to probiotics have unravelled the signalling and immune response pathways which are modulated by probiotic bacteria. Together, these genomic approaches and nutrigenomic analyses have identified several bacterial factors that are involved in modulation of the immune system and the mucosal barrier, and have revealed that a molecular 'bandwidth of human health' could represent a key determinant in an individual's physiological responsiveness to probiotics. These approaches may lead to improved stratification of consumers and to subpopulation-level probiotic supplementation to maintain or improve health, or to reduce the risk of disease.  相似文献   

8.
The use of lactobacilli as probiotics in swine has been gaining attention due to their ability to improve growth performance and carcass quality, prevent gastrointestinal infection and most importantly, their ‘generally recognized as safe’ status. Previous studies support the potential of lactobacilli to regulate host immune systems, enhance gut metabolic capacities and maintain balance in the gut microbiota. Research on swine gut microbiota has revealed complex gut microbial community structure and showed the importance of Lactobacillus to the host's health. However, the species‐ and strain‐specific characteristics of lactobacilli that confer probiotic benefits are still not well understood. The diversity of probiotic traits in a complex gut ecosystem makes it challenging to infer the relationships between specific functions of Lactobacillus sp. and host health. In this review, we provide an overview of how lactobacilli play a pivotal role in the swine gut ecosystem and identify key characteristics that influence gut microbial community structure and the health of pigs. In addition, based on recent and ongoing meta‐omics and omics research on the gut microbiota of pigs, we suggest a workflow combining culture‐dependent and culture‐independent approaches for more effective selection of probiotic lactobacilli.  相似文献   

9.
Bacteriocin Production: a Probiotic Trait?   总被引:1,自引:0,他引:1  
Bacteriocins are an abundant and diverse group of ribosomally synthesized antimicrobial peptides produced by bacteria and archaea. Traditionally, bacteriocin production has been considered an important trait in the selection of probiotic strains, but until recently, few studies have definitively demonstrated the impact of bacteriocin production on the ability of a strain to compete within complex microbial communities and/or positively influence the health of the host. Although research in this area is still in its infancy, there is intriguing evidence to suggest that bacteriocins may function in a number of ways within the gastrointestinal tract. Bacteriocins may facilitate the introduction of a producer into an established niche, directly inhibit the invasion of competing strains or pathogens, or modulate the composition of the microbiota and influence the host immune system. Here we review the role of bacteriocin production in complex microbial communities and their potential to enhance human health.  相似文献   

10.
Towards understanding molecular modes of probiotic action   总被引:9,自引:0,他引:9  
The possibility that certain microorganisms might be beneficial to human health is highlighted by the numerous consumer products containing probiotic bacteria. Probiotics are typically administered in food that, following entry into the gastro-intestinal tract, results in measurable health-promoting effects. Although there is a growing list of health benefits provided by the consumption of probiotics, their precise mechanisms of action remain largely unknown. Recent molecular- and genomics-based studies are starting to provide insight into the ways probiotic bacteria sense and adapt to the gastro-intestinal tract environment. Complementary approaches using host cell in vitro systems together with animal models and human volunteers are revealing specific intestinal cell responses to probiotics. These studies should ultimately disclose the molecular mechanisms and pinpoint the bacterial and host effector molecules and pathways by which probiotics are able to modulate human health.  相似文献   

11.
ABSTRACT: Lactic acid bacteria (LAB) have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms.  相似文献   

12.
The therapeutic effects of probiotic treatment in alcoholic liver disease (ALD) have been studied in both patients and experimental animal models. Although the precise mechanisms of the pathogenesis of ALD are not fully understood, gut-derived endotoxin has been postulated to play a crucial role in hepatic inflammation. Previous studies have demonstrated that probiotic therapy reduces circulating endotoxin derived from intestinal gram-negative bacteria in ALD. In this study, we investigated the effects of probiotics on hepatic tumor necrosis factor-α (TNFα) production and inflammation in response to chronic alcohol ingestion. Mice were fed Lieber DeCarli liquid diet containing 5% alcohol for 8 weeks, and Lactobacillus rhamnosus GG (LGG) was supplemented in the last 2 weeks. Eight-week alcohol feeding caused a significant increase in hepatic inflammation as shown by histological assessment and hepatic tissue myeloperoxidase activity assay. Two weeks of LGG supplementation reduced hepatic inflammation and liver injury and markedly reduced TNFα expression. Alcohol feeding increased hepatic mRNA expression of Toll-like receptors (TLRs) and CYP2E1 and decreased nuclear factor erythroid 2-related factor 2 expression. LGG supplementation attenuated these changes. Using human peripheral blood monocytes-derived macrophages, we also demonstrated that incubation with ethanol primes both lipopolysaccharide- and flagellin-induced TNFα production, and LGG culture supernatant reduced this induction in a dose-dependent manner. In addition, LGG treatment also significantly decreased alcohol-induced phosphorylation of p38 MAP kinase. In conclusion, probiotic LGG treatment reduced alcohol-induced hepatic inflammation by attenuation of TNFα production via inhibition of TLR4- and TLR5-mediated endotoxin activation.  相似文献   

13.
Probiotic and other functional microbes: from markets to mechanisms   总被引:14,自引:0,他引:14  
Insight into the diversity and function of the human intestinal microbiota has been stimulated by clinical studies with bacteria that exhibit specific functions and which are marketed as probiotics to positively affect our health. Initial efforts concentrated on establishing sound scientific support for the efficacy of these probiotic bacteria, which mainly include Lactobacillus and Bifidobacterium species. Following these evidence-based functional approaches, considerable research is now focused on the mechanisms of action of probiotic bacteria. The mechanisms identified to date mainly relate to the stimulation of host defence systems, immune modulation and the competitive exclusion of pathogens. Recent efficacy, molecular and genomics-based studies have also been reported for some probiotic strains that have found their position in the market place.  相似文献   

14.
模拟人体胃肠道环境筛选益生乳杆菌   总被引:7,自引:1,他引:6  
【目的】筛选具有益生特性的乳杆菌作为保健型酸奶的候选菌株。【方法】从健康人肠道和奶豆腐中分离筛选出耐受人工胃液的乳杆菌,对其进行体外益生特性(人工胃肠液耐受性、胆盐耐受性、抑菌活性及胆固醇降解能力)研究。【结果】从在乳杆菌分离培养基上有溶钙圈的41株菌株中筛选出5株耐酸、耐人工胃液较强的菌株,经16S rR NA基因测序鉴定,其中3株为乳杆菌,分别命名为植物乳杆菌Lp MT-3、植物乳杆菌Lp MT-5和唾液乳杆菌LsA F-7。在人工胃液中3株菌的耐受力均强于商品化的对照菌株LGG(鼠李糖乳杆菌GG);转入肠液4 h后直至26 h,Lp MT-5存活率基本稳定在45%左右,仅次于LGG。胆盐浓度为0.10%时,3株乳杆菌的耐胆盐能力均强于LGG;胆盐浓度为0.20%时,Lp MT-3和LsA F-7仍能存活。3株乳杆菌均具有抑菌活性,对粪肠球菌的抑制最明显,其次是金黄色葡萄球菌,对大肠杆菌、沙门氏菌的抑制作用较差。3株乳杆菌对胆固醇的清除效力依次为Lp MT-3LpM T-5Ls AF-7;清除率依次为Ls AF-7Lp MT-3LpM T-5。【结论】筛选出3株适应人体胃肠液环境、耐胆盐、抑菌及降胆固醇活力强的乳杆菌,可作为进一步开发新的益生菌产品和保健型酸奶的菌株。  相似文献   

15.
16.
Lactic acid bacteria as probiotics   总被引:1,自引:0,他引:1  
A number of Lactobacillus species, Bifidobacterium sp, Saccharomyces boulardii, and some other microbes have been proposed as and are used as probiotic strains, i.e. live microorganisms as food supplement in order to benefit health. The health claims range from rather vague as regulation of bowel activity and increasing of well-being to more specific, such as exerting antagonistic effect on the gastroenteric pathogens Clostridium difficile, Campylobacter jejuni, Helicobacter pylori and rotavirus, neutralising food mutagens produced in colon, shifting the immune response towards a Th2 response, and thereby alleviating allergic reactions, and lowering serum cholesterol (Tannock, 2002). Unfortunately, most publications are case reports, uncontrolled studies in humans, or reports of animal or in vitro studies. Whether or not the probiotic strains employed shall be of human origin is a matter of debate but this is not a matter of concern, as long as the strains can be shown to survive the transport in the human gastrointestinal (GI) tract and to colonise the human large intestine. This includes survival in the stressful environment of the stomach - acidic pH and bile - with induction of new genes encoding a number of stress proteins. Since the availability of antioxidants decreases rostrally in the GI tract production of antioxidants by colonic bacteria provides a beneficial effect in scavenging free radicals. LAB strains commonly produce antimicrobial substance(s) with activity against the homologous strain, but LAB strains also often produce microbicidal substances with effect against gastric and intestinal pathogens and other microbes, or compete for cell surface and mucin binding sites. This could be the mechanism behind reports that some probiotic strains inhibit or decrease translocation of bacteria from the gut to the liver. A protective effect against cancer development can be ascribed to binding of mutagens by intestinal bacteria, reduction of the enzymes beta-glucuronidase and beta-glucosidase, and deconjugation of bile acids, or merely by enhancing the immune system of the host. The latter has attracted considerable interest, and LAB have been tested in several clinical trials in allergic diseases. Characteristics ascribed to a probiotic strain are in general strain specific, and individual strains have to be tested for each property. Survival of strains during production, packing and storage of a viable cell mass has to be tested and declared.  相似文献   

17.
Shenderov BA 《Anaerobe》2011,17(6):490-495
Symbiotic gut microorganisms release of various soluble low molecular weight (LMW)molecules of different chemical nature (surface and exogenous proteins, nucleases, serpins, sirtuines, other enzymes, lectins, peptides, amines, bacteriocines, fatty and amino acids, lactones, furanons, miRNA, NO, etc). These LMW molecules are able to sense environment, interact with corresponding cell surface, membrane, cytoplasm and nucleic acid receptors, to reply quickly and coordinately by induction of special sets of genes, to support stability of host genome and microbiome, to modulate epigenomic regulation of gene phenotypic expression, to ensure the information exchange in numerous bacterial and bacteria-host systems playing an important role in the control for many genetic and physiological functions, biochemical and behaviour reactions, in supporting host health in general. Various symbiotic (probiotic) strains produce different spectrum of such LMW molecules. There is chemical and functional similarity between LMW molecules synthesized by host eukaryotic cells, indigenous and probiotic microorganisms and some micronutrients. It means many LMW compounds of different origin may be the universal regulators contributing to the transmission of information, quorum sensing effects, metagenome stability and epigenomic control for cell growth and development as well as phenotypic expression of different genes. Knowledge accumulated concerning molecular languages of symbiotic microorganisms allows us to better understand the mode of action of known probiotics and to design in principle novel probiotics (metabiotics) with increased health effectiveness. Now we are only at the beginning of a new era of molecular personal biotherapy and nutrition. Soon we can successfully manipulate both the host and its microbiota through interfering in their cross talk, stability and epigenomic regulation of expression of genes using various types of eukaryotic, prokaryotic and nutrition origin LMW molecules are capable to modulate genetic, metabolic and physiological activities.  相似文献   

18.
The opportunistic pathogen Pseudomonas (Ps.) aeruginosa causes severe infections, particularly in immunocompromised individuals and patients with cystic fibrosis (CF). A serious side effect of antibiotic therapy in Ps. aeruginosa infections is the development of resistance to antibiotics. During the infection process Ps. aeruginosa forms biofilms, rendering bacterial cells more resistant to disinfectants, antibiotics and the action of host immune defense effectors. Pseudomonas aeruginosa employs the intercellular communication system, known as quorum sensing (QS) to coordinate the expression of tissue-damaging factors. Since the QS systems controls the production of different virulence factors, it is possible that the inhibition of its regulatory activity to severely compromise the ability of Ps. aeruginosa to cause infections in humans. Many studies have shown that some probiotic strains exhibit inhibitory activity on different virulence properties of pathogenic bacteria (adherence to cellular or inert substrate, soluble virulence factors expression). The aim of the present study was to investigate by real-time RT-qPCR the influence of probiotic culture soluble factors on the QS genes expression in 30 Ps. aeruginosa strains isolated from patients hospitalized in the National Institute for Cardiovascular Infections, Prof. C.C. Iliescu Fundeni Hospital, Bucharest. The results of the real time RT-qPCR have shown that in all Ps. aeruginosa strains grown in the presence of probiotic culture sterile filtrates, the level of QS genes expression was reduced comparatively with those from control cultures. In conclusion, these results proved that the inhibition of virulence factors regulation mechanisms by soluble molecules secreted by probiotics could represent an interesting way pathogenicity and virulence attenuation in Ps. aeruginosa nosocomial strains.  相似文献   

19.
An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated.  相似文献   

20.

Background  

Bifidobacteria are natural inhabitants of the human gastrointestinal tract. In full-term newborns, these bacteria are acquired from the mother during delivery and rapidly become the predominant organisms in the intestinal microbiota. Bifidobacteria contribute to the establishment of healthy intestinal ecology and can confer health benefits to their host. Consequently, there is growing interest in bifidobacteria, and various strains are currently used as probiotic components in functional food products. However, the probiotic effects have been reported to be strain-specific. There is thus a need to better understand the determinants of the observed benefits provided by these probiotics. Our objective was to compare three human B. longum isolates with the sequenced model strain B. longum NCC2705 at the chromosome and proteome levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号