首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
Awn is one of the most important domesticated traits in rice (Oryza sativa). Understanding the genetic basis of awn length is important for grain harvest and production, because long awn length is disadvantageous for both grain harvest and milling. We investigated the awn length of 529 rice cultivars and performed a Genomewide association studies (GWAS) in the indica and japonica subpopulations, and the whole population. In total, we found 17 loci associated with awn length. Of these loci, seven were linked to previously reported quantitative trait loci, and one was linked to the awn gene An-1. Nine novel loci were repeatedly identified in different environments. One of the nine associations was identified in both the whole and japonica populations. Special interest was the detection of the most significant association SNP, sf0136352825, which was less than 95 kb from the seed shattering gene qSH1. These results may provide potentially favourable haplotypes for molecular breeding in rice.  相似文献   

2.
The population genetic variation of the tetraploid species Oxytropis chankaensis Jurtz. (Fabaceae), a local endemic of the western coast of Khanka Lake (Primorye), was examined. Five populations were analyzed using 28 isozyme loci encoding 16 enzyme systems. Significant allelic heterogeneity among the populations was found for six out of twelve polymorphic loci. The heterozygosity of the samples (total sample size 294 plants) H e = 0.301 was considerable higher than the mean values in populations of endemic species (0.076). Based on the results of this study, we identified two groups of O. chankaensis populations (southern and northern), in spite of the absence of marked hiatus between them. Of special interest is the population from Przhewalski Spit, which is a natural reserve of genetic diversity of the species and the putative center of formation of the autotetraploid O. chankaensis.  相似文献   

3.
Rare species consisting of small populations are subject to random genetic drift, which reduces genetic diversity. Thus, determining the relationship between population size and genetic diversity would provide key information for planning a conservation strategy for rare species. We used six microsatellite markers to investigate seven extant populations of the rare conifer Pseudotsuga japonica, which is endemic to the Kii Peninsula and Shikoku Island regions that are geographically separated by the Kii Channel in southwest Japan. The population differentiation of P. japonica was relatively high (FST = 0.101) for a coniferous species, suggesting limited gene flow among populations. As expected, significant regional differentiation (AMOVA; p?<?0.05) indicated genetic divergence across the Kii Channel. A strong positive correlation between census population size and the number of rare alleles (r?=?0.862, p?<?0.05) was found, but correlations with major indices of genetic diversity were not significant (allelic richness: r?=?0.649, p?=?0.104, expected heterozygosity: r?=?0.361, p?=?0.426). The observed order of magnitude of correlation with three genetic diversity indices corresponded with the theoretically expected order of each index’ sensitivity (i.e., the rate of decline per generation) to the bottleneck event. Thus, features that exhibit a faster response, i.e., the number of rare alleles, would have been subject to deleterious effects of the recent decline in population size, which is presumably caused by the development of extensive artificial plantations of other tree species over the last several decades. Finally, we propose a conservation plan for P. japonica based on our findings.  相似文献   

4.
Genotyping of Kazakh camels Camelus dromedarius (milk breed) (n = 18) and Camelus bactrianus (meat breed) (n = 18) by alpha-S1-casein (αs1-CN) and kappa-casein (κ-CN) loci was conducted using the PCR–RFLP analysis method. A new pair of primers was suggested for the amplification of the CSN3 gene fragment with subsequent cleavage of the reaction products by AluI restriction endonuclease in order to identify the gene genetic variants. DNA polymorphism was detected only for the kappa-casein locus; no genetic polymorphism for alpha-S1-casein gene was found in the studied populations. Analysis of the results of DNA fingerprinting demonstrated that the band sharing (BS) coefficient between the groups was low enough (0.13), and the genetic distance (D) between Dromedary and Bactrian breeds was 0.305. The results of genotyping of Bactrian and Dromedary Kazakh camel breeds by alpha-S1-casein, kappa-casein loci, and DNA fingerprinting indicate that the Dromedary breed female camels are more polymorphic as compared with Bactrian.  相似文献   

5.
The objectives of conservation and sustainable forest management require in depth study of genomes of woody plants and definition of their intraspecific genetic diversity. In recent years, an approach was developed based on the study of “candidate genes” that can potentially be involved in the formation of adaptive traits. In this study, we investigated nucleotide polymorphism of several adaptive candidate genes in the populations of Siberian larch (Larix sibirica Ledeb.) in the Urals. Representatives of this genus are among the most valuable and widely distributed forest tree species in Russia. From ten selected gene loci in the genome of L. sibirica, we isolated and investigated three loci, one of which (ABA-WDS) was sequenced in L. sibirica for the first time. The total length of the analyzed sequence in each individual amounted to 2865 bp. The length of locus alignment was from 360 bp to 1395 bp. In total, we identified 200 polymorphic positions. The most conservative is locus 4CL1-363, and the most polymorphic is locus sSPcDFD040B03103-274. The studied populations of L. sibirica are characterized by a high level of nucleotide polymorphism in comparison with other species and genuses (Picea, Pinus, Pseudotsuga, Abies) conifers plants (Hd = 0.896; π = 0.007; θW = 0.015). The most selectively neutral polymorphism (D T =–0.997) was attributed to locus 4CL1-363, and polymorphism with high probability of adaptability (D T =–1.807) was determined for the ABA-WDS locus. We identified 54 SNP markers, only five of which were nonsynonymous (9.26%) replacements. The average frequency of SNPs in the three studied loci of L. sibirica was one SNP in 53 bp. We detected unique SNP markers for eight populations, which could potentially be used to identify populations. Populations that are characterized by the highest number of unique SNP markers can be recommended for selection in order to preserve the gene pool of the species.  相似文献   

6.
The population genetic structure of plant pathogenic fungus Pyrenophora tritici-repentis was examined using microsatellite (SSR) markers. According to the geographical origin of the pathogen populations, they were designated as North Caucasian (S, 33 isolates), northwest (Nw, 39), and Omsk (Om, 43). The populations were analyzed at the nine most polymorphic SSR loci, at which 75 alleles were identified. To characterize the genetic variation within and between populations, the AMOVA algorithm as implemented in the Arlequin v. 3.5 software program was used. The number of alleles per locus ranged from 5 to 12 and their sizes varied within the range from 180 to 400 bp. The mean gene diversity at SSR loci was high for all populations (H = 0.58–0.75). The populations were considerably different in the frequencies of individual alleles of the SSR loci. Most isolates in the populations were represented by unique haplotypes. The within-population variation of the isolates at molecular markers was 86.4%; among the populations, 13.6%. Substantial interpopulation differences were found between the Om and S (Fst = 0.16) and between the Om and Nw (Fst = 0.20) populations, whereas between the S and Nw populations, these differences were small (Fst = 0.05). Thus, it was demonstrated that the population of P. tritici-repentis from Omsk oblast had the independent status of the geographical population; northwest and North Caucasian populations differed in the allelic diversity of SSR loci, and despite the low Fst value (0.05), they also belonged to independent geographical populations.  相似文献   

7.
The article presents the genetic parameters of the populations of lizards of the Darevskia raddei complex (D. raddei nairensis and D. raddei raddei) and the populations of D. valentini calculated on the basis of the analysis of variability of 50 allelic variants of the three nuclear genome microsatellite-containing loci of 83 individuals. It was demonstrated that the Fst genetic distances between the populations of D. raddei nairensis and D. raddei raddei were not statistically significantly different from the Fst genetic distances between the populations of different species, D. raddei and D. valentini. At the same time, these distances were statistically significantly higher than the Fst distances between the populations belonging to one species within the genus Darevskia. These data suggest deep divergence between the populations of D. raddei raddei and D. raddei nairensis of the D. raddei complex and there arises the question on considering them as separate species.  相似文献   

8.
Three-line japonica hybrids have been developed mainly on Chinsurah Boro II (BT)-type cytoplasmic male sterile (CMS) lines of Oryza sativa L., but the unstable sterility of some BT-type CMS lines, and the threat of genetic vulnerability when using a single cytoplasm source, have inhibited their use in rice cultivation. Previously, the sterility of Honglian (HL)-type japonica CMS lines derived from common red-awned wild rice (Oryza rufipogon) has been proven to be more stable than that of BT-type japonica CMS lines. Here, we genetically characterized HL-type japonica CMS lines and the restorer-of-fertility (Rf) gene for breeding HL-type japonica hybrids. HL-type japonica CMS lines displayed stained abortive pollen grains, unlike HL-type indica CMS lines. The BT-type japonica restorer lines, which contain Rf, had different capabilities to restore HL-LiuqianxinA (HL-LqxA), an HL-type japonica CMS line, and the restorers for the HL-type japonica CMS lines could be selected from the preexisting BT-type japonica restorers in rice production. A genetic analysis showed that the restoration of normal fertility to HL-LqxA was controlled by a major gene and was affected by minor effector genes and/or modifiers. The major Rf in SiR2982, a BT-type japonica restorer, was mapped to a ~100-kb physical region on chromosome 10, and was demonstrated to be Rf5 (Rf1a) by sequencing. Furthermore, Rf5 partially restored fertility and had a dosage effect on HL-type japonica CMS lines. These results will be helpful for the development of HL-type japonica hybrids.  相似文献   

9.
Rice is one of the most important food crops in the world. Genetic diversity is essential for cultivar improvement programs. We compared genetic diversity derived from insertion–deletion (in–del) or base substitutions by amplified fragment length polymorphism (AFLP), from transposon transposition mutations by transposon display (TD), and from cytosine methylation by methylation-sensitive amplified polymorphism (MSAP) in japonica, indica, and Tongil type varieties of Oryza sativa L. Polymorphic profiles from the three marker systems allowed us to clearly distinguish the three types of varieties. The indica type varieties showed the highest genetic diversity followed by the Tongil and japonica type varieties. Of the three marker systems, TD produced the highest marker indices, and AFLP and MSAP produced similar marker indices. Pair-wise comparisons of the three marker systems showed that the correlation between the two genetic markers systems (AFLP and TD, r = 0.959) was higher than the correlations between the genetic and epigenetic marker systems (AFLP and MSAP, r = 0.52; TD and MSAP, r = 0.505). Both genetic marker systems had similar levels of gene differentiation (G ST ) and gene flow (N m ), which differed in the epigenetic marker system. Although the G ST of the epigenetic marker system was lower than the genetic marker systems, the N m of the epigenetic marker system was higher than in the genetic marker systems, indicating that epigenetic variations have a greater influence than genetic variations among the O. sativa L. types.  相似文献   

10.
Cycas debaoensis is a critically endangered cycad species endemic to China. This species is found on two kinds of habitats according to the edaphic differences, sand and karst. A previous chloroplast DNA (cpDNA) study indicated that C. debaoensis had low genetic variation within populations and high genetic differentiation among populations. Because maternally inherited cpDNA does not fully characterize genetic structure of the species, we screened seven low-copy nuclear genes and 17 nuclear microsatellite loci to detect the nuclear genetic diversity, differentiation, and the population structure of C. debaoensis. The nuclear genes revealed higher level of genetic diversity. There were both the same and region-specific haplotypes or alleles between the karst and sand regions. Nuclear gene flow among all the populations was much greater than that of cpDNA, which indicated that pollen-mediated gene flow was much greater than seed-mediated gene flow. This promoted low nuclear genetic differentiation among populations of C. debaoensis. The study suggests that both genetic and anthropogenic disturbances have resulted in the critically endangered status of C. debaoensis.  相似文献   

11.
The genetic diversity, subdivision, and differentiation of nine populations of Norway spruce (Picea abies (L.) Karst.) in Ukrainian Carpathians were studied using electrophoretic analysis of variability of enzyme systems in 346 trees aged from 80 to 150 years. Based on electrophoretic fractionation of enzymes extracted from seed endosperms in vertical slabs of 7.5% polyacrylamide gel, 20 loci of nine enzyme systems (ADH, ACP, DIA, GDH, GOT, MDH, LAP, FDH, SOD) were identified, and 71 allele variant were revealed. Each tree was heterozygous on average in 15.8% of its genes. The populations were characterized by low subdivision (F ST = 0.017) and differentiation (D N = 0.005). The main contribution to heterogeneity of population genetic structure was made by loci Dia-3, Lap-1, and Sod-3. Clustering and multivariate analysis revealed no observed trends in geographical or altitudinal position of the populations.  相似文献   

12.
The results of studying the polymorphism and genetic structure of populations of D. salina and D. incarnata growing in Zabaykalsky krai and Buryatia are represented according to the data of allozyme analysis of eight genetic loci (PGI, NADHD, SKDH, GDH, PGM, DIA, ADH, and IDH). The specificity of the allelic structure of loci SKDH, PGM, and IDH is established, for which D. salina and D. incarnata reliably differ from each other. It is shown that interspecies introgressive hybrid complexes with different genetic structures were formed in Transbaikalia. Places of mass growth of D. incarnata were observed to have single plants of D. salina, the interspecies hybrids of the first and subsequent generations. Places of mass growth of D. salina were observed to contain only the hybrids that are not hybrids of the first generation. They were heterozygous not for three loci with differentiating alleles of both parents, SKDH, PGM, and IDH, but for only one of them. The degree of genetic differentiation among five populations of D. salina was on average 7.5% and that of D. incarnata was 7.1%, which in accordance with Wright’s estimation relates to mean values. The average value of FST for all studied populations of the two related species of the genus Dactylorhiza was 0.478, indicating a very high degree of genetic differentiation between D. salina and D. incarnata growing in Transbaikalia. The greatest differences between the species are for the allelic structure of loci SKDH, PGM, and IDH (FST was equal to 0.705, 0.976, and 0.762, respectively). Analysis of molecular variance (AMOVA) showed that populations of D. salina and D. incarnata in the zone where their ranges in Zabaykalsky krai and Buryatya overlap have essential differences both for the variation of alleles frequencies of eight loci (71%, d.f. = 9) and for the variability of genotypes (61%, d.f. = 9). Despite the fact that D. salina and D. incarnata explicitly share a gene flow as a result of interspecies hybridization, the genetic differentiation of populations of these related species remains at a high level.  相似文献   

13.
Polar cod, Boreogadus saida, is a key species in Arctic marine ecosystems; however, its genetic population structure is largely undescribed. The population genetic structure of 472 B. saida specimens among nine locations in the north-east Atlantic was revealed using 12 microsatellite loci. Pairwise F ST comparisons showed significant population differentiation between B. saida sampled inside fjords in Svalbard and north-east Greenland, as compared to B. saida from the shelf. The observed genetic variation was not a function of isolation by distance, and it is speculated that B. saida populations inhabiting fjords may have become reproductively isolated from shelf-dwelling B. saida during the last post-glacial recolonization.  相似文献   

14.
Cryptomeria japonica pollinosis is one of the most serious allergic diseases in Japan; this is a social problem because C. japonica is the most important Japanese forestry species. In order to reduce the amount of pollen dispersed, breeding programs using trees with male-sterile genes have been implemented. High-density linkage maps with stable ordering of markers facilitate the localization of male-sterile genes and the construction of partial linkage maps around them in order to develop markers for use in marker-assisted selection. In this study, a high-density linkage map for C. japonica with 2560 markers was constructed. The observed map length was 1266.2 cM and the mean distance between adjacent markers was 0.49 cM. Using information from this high-density map, we newly located two male-sterile genes (ms3 and ms4) on the first and fourth linkage groups, respectively, and constructed partial linkage maps around these loci. We also constructed new partial linkage maps around the ms1 and ms2 loci using additional SNP markers. The closest markers to the ms1, ms2, ms3, and ms4 male-sterile loci were estSNP04188 (1.8 cM), estSNP00695 (7.0 cM), gSNP05415 (3.1 cM), and estSNP01408 (7.0 cM) respectively. These results allowed us to develop SNP markers tightly linked to the male sterile genes for use in MAS; this will accelerate the future isolation of these genes by map-based cloning approaches.  相似文献   

15.
Major histocompatibility complex (MHC) genes are excellent markers for the study of adaptive genetic variation occurring over different geographical scales. The Chinese egret (Egretta eulophotes) is a vulnerable ardeid species with an estimated global population of 2600–3400 individuals. In this study, we sampled 172 individuals of this egret (approximately 6 % of the global population) from five natural populations that span the entire distribution range of this species in China. We examined their population genetic diversity and geographical differentiation at three MHC class II DAB genes by identifying eight exon 2 alleles at Egeu-DAB1, eight at Egeu-DAB2 and four at Egeu-DAB3. Allelic distributions at each of these three Egeu-DAB loci varied substantially within the five populations, while levels of genetic diversity varied slightly among the populations. Analysis of molecular variance showed low but significant genetic differentiation among five populations at all three Egeu-DAB loci (haplotype-based ?ST: 0.029, 0.020 and 0.042; and distance-based ?ST: 0.036, 0.027 and 0.043, respectively; all P < 0.01). The Mantel test suggested that this significant population genetic differentiation was likely due to an isolation-by-distance pattern of MHC evolution. However, the phylogenetic analyses and the Bayesian clustering analysis based on the three Egeu-DAB loci indicated that there was little geographical structuring of the genetic differentiation among five populations. These results provide fundamental population information for the conservation genetics of the vulnerable Chinese egret.  相似文献   

16.
17.

Background

The roe deer, Capreolus sp., is one of the most widespread meso-mammals of Palearctic distribution, and includes two species, the European roe deer, C. capreolus inhabiting mainly Europe, and the Siberian roe deer, C. pygargus, distributed throughout continental Asia. Although there are a number of genetic studies concerning European roe deer, the Siberian roe deer has been studied less, and none of these studies use microsatellite markers. Natural processes have led to genetic structuring in wild populations. To understand how these factors have affected genetic structure and connectivity of Siberian roe deer, we investigated variability at 12 microsatellite loci for Siberian roe deer from ten localities in Asia.

Results

Moderate levels of genetic diversity (H E = 0.522 to 0.628) were found in all populations except in Jeju Island, South Korea, where the diversity was lowest?(H E?= 0.386). Western populations showed relatively low genetic diversity and higher degrees of genetic differentiation compared with eastern populations (mean Ar = 3.54 (east), 2.81 (west), mean F ST = 0.122). Bayesian-based clustering analysis revealed the existence of three genetically distinct groups (clusters) for Siberian roe deer, which comprise of the Southeastern group (Mainland Korea, Russian Far East, Trans-Baikal region and Northern part of Mongolia), Northwestern group (Western Siberia and Ural in Russia) and Jeju Island population. Genetic analyses including AMOVA (F RT = 0.200), Barrier and PCA also supported genetic differentiation among regions separated primarily by major mountain ridges, suggesting that mountains played a role in the genetic differentiation of Siberian roe deer. On the other hand, genetic evidence also suggests an ongoing migration that may facilitate genetic admixture at the border areas between two groups.

Conclusions

Our results reveal an apparent pattern of genetic differentiation among populations inhabiting Asia, showing moderate levels of genetic diversity with an east-west gradient. The results suggest at least three distinct management units of roe deer in continental Asia, although genetic admixture is evident in some border areas. The insights obtained from this study shed light on management of Siberian roe deer in Asia and may be applied in conservation of local populations of Siberian roe deer.
  相似文献   

18.
Wheat powdery mildew, caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is one of the most devastating diseases of wheat in China and causes serious yield losses. Resistance genes are urgently needed by wheat breeding programs to combat this disease. In the present study, genetic analysis of powdery mildew resistance was conducted on segregated F2 and F2:3 populations derived from the cross of Shangeda (providing good resistance to powdery mildew) and Chancellor (susceptible to powdery mildew). The results showed that the resistance of Shangeda to E09 was controlled by a single recessive gene, tentatively designated as PmSGD. In addition, RNA sequencing of the parental lines Shangeda and Chancellor and the corresponding bulked pools derived from homozygous resistant or susceptible F2:3 lines was implemented to identify single-nucleotide polymorphisms (SNPs). The PmSGD gene was estimated to be located in the 240–250-Mb region of chromosome 7B based on the characteristics of putative SNP loci distributed on 21 wheat chromosomes. Among the developed SNP markers, 17 (57%) markers were linked to PmSGD flanked by SNP2-57 and SNP2-46, with genetic distances of 0.4 and 0.8 cM, respectively. The reaction patterns of Shangeda and cultivars (lines) carrying the Pm5e, Pmhym, mlxbd, and PmTm4 genes to 22 Bgt isolates indicated that PmSGD may be allelic or very closely linked to those genes. All of the SNP loci linked to PmSGD were used to test 38 cultivars with known Pm gene(s), and the results suggested that these SNP loci are useful for pyramiding PmSGD by marker-assisted selection.  相似文献   

19.
Nine microsatellite loci for genetic analysis of three populations of the tropical tree Eugenia uniflora L. (pitanga or Brazilian cherry) from fragments of semideciduous forest were developed. We used the technique of building a (GA) n and (CA) n microsatellite-enriched library by capture with streptavidin-coated magnetic beads. We assessed the polymorphism of seven microsatellites in 84 mature trees found in three areas (Ribeirão Preto, Tambaú and São José do Rio Pardo), highly impacted by the agricultural practices, in a large region among Pardo river and Mogi-Guaçu river basins, in state of São Paulo, Brazil. All loci were polymorphic, and the number of alleles was high, ranging from 6 to 24, with a mean of 14.4. All stands showed the same high level of genetic diversity (mean H E  = 0.83) and a low genetic differentiation (mean F ST = 0.031), indicating that genetic diversity was higher within rather than among populations. Seven of the nine loci were highly variable, and sufficiently informative for E. uniflora. It was concluded that these new SSR markers can be efficiently used for gene flow studies.  相似文献   

20.
We evaluated the genetic diversity of the African poplar (Populus ilicifolia) populations found in Kenya compared with reference samples of five poplar species from North America and one species introduced in Kenya from India (KEFRI-Kenya). Amplified fragment length polymorphism (AFLP) was used with the objective of providing important information for breeding and in situ/ex situ conservation of this species. Samples collected from three locations along the species’ natural range (Athi, Ewaso Nyiro, and Tana rivers) were compared with four samples of locally planted Populus deltoides stand introduced from India and ten reference samples from North America. Six AFLP primer combinations produced 521 clear bands for analysis. The percentage polymorphic loci were lowest in Tana (20.4 %) and highest in Athi (40.6 %). The average heterozygosity across the studied populations was between 0.07 and 0.3. AMOVA revealed more genetic variation partitioning within population (87 %; P?<?0.01) than among populations (13 %; P?<?0.01) suggesting significant genetic variation between populations. Further, UPGMA delineation showed two clusters of the Tana, Athi, and Ewaso Nyiro populations clustered together compared to the North America and India/KEFRI reference samples. Moreover, the study showed that the Athi population is more diverse than those of Tana and Ewaso Nyiro and may be important for conservation, domestication, and improvement studies. The genetic differentiation (F ST ?=?0.134) among Kenyan P. ilicifolia populations suggests limited possibility of gene flow between these populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号