首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Natural and sexual selection shape the evolution of species but the interplay between them is poorly understood. Two phylogenetic studies on birds have suggested that species with greater sexual dichromatism have a broader habitat use. We show that in agamid lizards, species with more elaborate secondary sexual traits are also ecologically more opportunistic. Species with greater dimorphism in head size and ornamentation have greater altitudinal range and broader habitat use, respectively, and species with greater sexual dichromatism have wider microhabitat use. Body size was positively associated with sexual and ecological generalism, but associations between ecological and sexual traits remained after accounting for body size. We suggest that sexual and natural selection may be linked either because sexual selection can promote generalism at the population level by favouring 'good genes', or because higher population densities may be associated with both stronger sexual selection and broader resource use.  相似文献   

2.
Why does species richness vary so greatly across lineages? Traditionally, variation in species richness has been attributed to deterministic processes, although it is equally plausible that it may result from purely stochastic processes. We show that, based on the best available phylogenetic hypothesis, the pattern of cladogenesis among agamid lizards is not consistent with a random model, with some lineages having more species, and others fewer species, than expected by chance. We then use phylogenetic comparative methods to test six types of deterministic explanation for variation in species richness: body size, life history, sexual selection, ecological generalism, range size and latitude. Of eight variables we tested, only sexual size dimorphism and sexual dichromatism predicted species richness. Increases in species richness are associated with increases in sexual dichromatism but reductions in sexual size dimorphism. Consistent with recent comparative studies, we find no evidence that species richness is associated with small body size or high fecundity. Equally, we find no evidence that species richness covaries with ecological generalism, latitude or range size.  相似文献   

3.
The relative roles of natural and sexual selection in promoting evolutionary lineage divergence remains controversial and difficult to assess in natural systems. Local adaptation through natural selection is known to play a central role in promoting evolutionary divergence, yet secondary sexual traits can vary widely among species in recent radiations, suggesting that sexual selection may also be important in the early stages of speciation. Here, we compare rates of divergence in ecologically relevant traits (morphology) and sexually selected signalling traits (coloration) relative to neutral structure in genome‐wide molecular markers and examine patterns of variation in sexual dichromatism to explore the roles of natural and sexual selection in the diversification of the songbird genus Junco (Aves: Passerellidae). Juncos include divergent lineages in Central America and several dark‐eyed junco (J. hyemalis) lineages that diversified recently as the group recolonized North America following the last glacial maximum (ca. 18,000 years ago). We found an accelerated rate of divergence in sexually selected characters relative to ecologically relevant traits. Moreover, sexual dichromatism measurements suggested a positive relationship between the degree of colour divergence and the strength of sexual selection when controlling for neutral genetic distance. We also found a positive correlation between dichromatism and latitude, which coincides with the geographic axis of decreasing lineage age in juncos but also with a steep ecological gradient. Finally, we found significant associations between genome‐wide variants linked to functional genes and proxies of both sexual and natural selection. These results suggest that the joint effects of sexual and ecological selection have played a prominent role in the junco radiation.  相似文献   

4.
Male birds use song to attract mates and deter other males,but in doing so, they also attract the attention of predatorsand parasites. Such viability costs are inherent in reliablesignals, potentially causing females to prefer mates that displayfrom the most exposed sites. However, viability costs of sexualsignals may be ameliorated by affecting the choice of microhabitat,which in turn may affect the design of song features that aremost efficiently transmitted in this microhabitat. We estimatedthe exposure of song posts (microsites used by males when singing)used by passerine birds in relation to prey selection by thesparrowhawk Accipiter nisus, by calculating the proportion ofmales that sang from song posts that were at the maximum levelof the vegetation, in an attempt to quantify the costs of sexualselection. We quantified prey susceptibility to predation asthe difference between the log-transformed observed number ofprey minus the log-transformed expected number of prey in theenvironment. This prey susceptibility index increased with increasingsong post exposure similarly in sexually dichromatic and monochromaticspecies, although the prey susceptibility index was relatedto sexual dichromatism. Song post exposure was dependent onhabitat, but comparative models controlling for the potentiallyconfounding effects of habitat, sexual dichromatism, hole nesting,coloniality, body mass, cognitive capacities, and flying abilitiesindicated that the relationship between the prey susceptibilityindex and song post exposure is strong. Path analyses of therelationship between song post exposure, sexual dichromatism,and prey susceptibility index revealed that selection actingon sexual dichromatism and song post exposure has secondaryimpact on prey susceptibility index. The opposite causal mechanismsby which predation affects sexual traits are less likely. Thesemodels suggest that female preference for high song posts ordichromatic plumage increases predation risk on an evolutionarytime scale.  相似文献   

5.
Many animal taxa that display sexual size dimorphism (SSD) exhibit a positive allometric relationship in which the degree of dimorphism increases with body size. This macroevolutionary pattern is known as Rensch's rule. Although sexual selection is hypothesized to be the main mechanism causing this pattern, body size is influenced by several selective forces, including natural and sexual selection. Therefore, by focusing exclusively on SSD one cannot ascertain which of these selective forces drives Rensch's rule. If sexual selection is indeed the main mechanism underlying Rensch's rule, we predict that other sexually selected traits, including coloration‐based ornaments, will also exhibit interspecific allometric scaling consistent with Rensch's rule. We tested this prediction using wing pigmentation of 89 species of dragonflies. Studies show that male wing pigmentation is generally under strong intra‐ and intersexual selection, so that sexual dichromatism in this trait should follow Rensch's rule. Conversely, the available evidence suggests that male body size is usually not sexually selected in dragonflies, so we do not expect SSD to follow Rensch's rule. First, we found that sexual dichromatism in wing pigmentation was consistent with Rensch's rule. The phylogenetic major axis regression slope was significantly greater than one. We also showed that the allometric slope for SSD was not different from unity, providing no support for Rensch's rule. Our results provide the first evidence that a trait which appears to be under strong sexual selection exhibits a pattern consistent with Rensch's rule.  相似文献   

6.
Sexual traits (e.g. visual ornaments, acoustic signals, courtship behaviour) are often displayed together as multimodal signals. Some hypotheses predict joint evolution of different sexual signals (e.g. to increase the efficiency of communication) or that different signals trade off with each other (e.g. due to limited resources). Alternatively, multiple signals may evolve independently for different functions, or to communicate different information (multiple message hypothesis). We evaluated these hypotheses with a comparative study in the family Estrildidae, one of the largest songbird radiations, and one that includes many model species for research in sexual selection and communication. We found little evidence for either joint evolution or trade‐offs between song and colour ornamentation. Some negative correlations between dance repertoire and song traits may suggest a functional compromise, but generally courtship dance also evolved independently from other signals. Instead of correlated evolution, we found that song, dance and colour are each related to different socio‐ecological traits. Song complexity evolved together with ecological generalism, song performance with investment in reproduction, dance with commonness and habitat type, whereas colour ornamentation was shown previously to correlate mostly with gregariousness. We conclude that multimodal signals evolve in response to various socio‐ecological traits, suggesting the accumulation of distinct signalling functions.  相似文献   

7.
It is not known how environmental pressures and sexual selection interact to influence the evolution of extravagant male traits. Sexual and natural selection are often viewed as antagonistic forces shaping the evolution of visual signals, where conspicuousness is favored by sexual selection and crypsis is favored by natural selection. Although typically investigated independently, the interaction between natural and sexual selection remains poorly understood. Here, we investigate whether sexual dichromatism evolves stochastically, independent from, or in concert with habitat use in darters, a species‐rich lineage of North American freshwater fish. We find the evolution of sexual dichromatism is coupled to habitat use in darter species. Comparative analyses reveal that mid‐water darter lineages exhibit a narrow distribution of dichromatism trait space surrounding a low optimum, suggesting a constraint imposed on the evolution of dichromatism, potentially through predator‐mediated selection. Alternatively, the transition to benthic habitats coincides with greater variability in the levels of dichromatism that surround a higher optimum, likely due to relaxation of the predator‐mediated selection and heterogeneous microhabitat dependent selection regimes. These results suggest a complex interaction of sexual selection with potentially two mechanisms of natural selection, predation and sensory drive, that influence the evolution of diverse male nuptial coloration in darters.  相似文献   

8.
Whether sexual selection acts as an "engine of speciation" is controversial. Some studies suggest that it promotes the evolution of reproductive isolation, while others find no relationship between sexual selection and species richness. However, the explanatory power of previous models may have been constrained because they employed coarse-scale, between-family comparisons and used mating systems and morphological cues as surrogates for sexual selection. In birds, an obvious missing predictor is song, a sexually selected trait that functions in mate choice and reproductive isolation. We investigated the extent to which plumage dichromatism and song structure predicted species richness in a diverse family of Neotropical suboscine birds, the antbirds (Thamnophilidae). These analyses revealed a positive relationship between the intensity of sexual selection and diversity: genera with higher levels of dichromatism and lower-pitched, more complex songs contained greater numbers of species. This relationship held when controlling for phylogeny and was strengthened by the inclusion of subspecies, suggesting that sexual selection has played a role in the diversification of antbirds. This is the first study to reveal correlations between song structure and species diversity, emphasizing the importance of acoustic signals, and within-family analyses, in comparative studies of sexual selection.  相似文献   

9.
Both sexual selection and natural selection can influence the form of dimorphism in secondary sexual traits. Here, we used a comparative approach to examine the relative roles of sexual selection and natural selection in the evolution of sexually dimorphic coloration (dichromatism) and ornamentation in agamid lizards. Sexual dimorphism in head and body size were used as indirect indicators of sexual selection, and habitat type (openness) as an index of natural selection. We examined separately the dichromatism of body regions "exposed to" and "concealed from" visual predators, because these body regions are likely to be subject to different selection pressures. Dichromatism of "exposed" body regions was significantly associated with habitat type: males were typically more conspicuously coloured than females in closed habitats. By contrast, dichromatism of "concealed" body regions and ornament dimorphism were positively associated with sexual size dimorphism (SSD). When we examined male and female ornamentation separately, however, both were positively associated with habitat openness in addition to snout-vent length and head SSD. These results suggest that natural selection constrains the evolution of elaborate ornamentation in both sexes as well as sexual dichromatism of body regions exposed to visual predators. By contrast, dichromatism of "concealed" body regions and degree of ornament dimorphism appear to be driven to a greater degree by sexual selection.  相似文献   

10.
The evolution of sexual dimorphism has long been attributed to sexual selection, specifically as it would drive repeated gains of elaborate male traits. In contrast to this pattern, New World oriole species all exhibit elaborate male plumage, and the repeated gains of sexual dichromatism observed in the genus are due to losses of female elaboration. Interestingly, most sexually dichromatic orioles belong to migratory or temperate‐breeding clades. Using character scoring and ancestral state reconstructions from two recent studies in Icterus, we tested a hypothesis of correlated evolution between migration and sexual dichromatism. We employed two discrete phylogenetic comparative approaches: the concentrated changes test and Pagel's discrete likelihood test. Our results show that the evolution of these traits is significantly correlated (CCT: uncorrected P < 0.05; ML: LRT = 12.470, P < 0.005). Indeed, our best model of character evolution suggests that gains of sexual dichromatism are 23 times more likely to occur in migratory taxa. This study demonstrates that a life‐history trait with no direct relationship with sexual selection has a strong influence on the evolution of sexual dichromatism. We recommend that researchers further investigate the role of selection on elaborate female traits in the evolution of sexual dimorphism.  相似文献   

11.
Bird song is a widely used model in the study of sexual selection. Variation in the expression of sexually selected traits is thought to reflect variation in male genetic and/or phenotypic quality. Vocal amplitude is a song parameter that has received little attention in the context of sexual selection, but there is some evidence that the intensity of bird song affects female preferences. Here, we tested whether the amplitude of broadcast song plays a role in male–male competition. We used song playback with varying song amplitude (within the natural amplitude range of the species) and a dummy bird taxidermy to simulate territorial intrusions in the great tit, Parus major, during the fertile period of the female and measured the response of the local male. The results show that playback amplitude significantly affected the subjects’ behaviour: after approaching to within 25 m around the loudspeaker, territorial males stayed longer within that perimeter after the playback of high‐amplitude songs compared with low‐amplitude songs. Our findings add to the small but growing body of evidence suggesting that vocal amplitude may be a sexually selected song trait.  相似文献   

12.
A major challenge for studying the role of sexual selection in divergence and speciation is understanding the relative influence of different sexually selected signals on those processes in both intra‐ and interspecific contexts. Different signals may be more or less susceptible to co‐option for species identification depending on the balance of sexual and ecological selection acting upon them. To examine this, we tested three predictions to explain geographic variation in long‐ versus short‐range sexual signals across a 3,500 + km transect of two related Australian field cricket species (Teleogryllus spp.): (a) selection for species recognition, (b) environmental adaptation and (c) stochastic divergence. We measured male calling song and male and female cuticular hydrocarbons (CHCs) in offspring derived from wild populations, reared under common garden conditions. Song clearly differentiated the species, and no hybrids were observed suggesting that hybridization is rare or absent. Spatial variation in song was not predicted by geography, genetics or climatic factors in either species. In contrast, CHC divergence was strongly associated with an environmental gradient supporting the idea that the climatic environment selects more directly upon these chemical signals. In light of recently advocated models of diversification via ecological selection on secondary sexual traits, the different environmental associations we found for song and CHCs suggest that the impact of ecological selection on population divergence, and how that influences speciation, might be different for acoustic versus chemical signals.  相似文献   

13.
The role of sexual selection in speciation is investigated, addressing two main issues. First, how do sexually selected traits become species recognition traits? Theory and empirical evidence suggest that female preferences often do not evolve as a correlated response to evolution of male traits. This implies that, contrary to runaway (Fisherian) models of sexual selection, premating isolation will not arise as an automatic side effect of divergence between populations in sexually selected traits. I evaluate premating isolating mechanisms in one group, the birds. In this group premating isolation is often a consequence of sexual imprinting, whereby young birds learn features of their parents and use these features in mate choice. Song, morphology and plumage are known recognition cues. I conclude that perhaps the main role for sexual selection in speciation is in generating differences between populations in traits. Sexual imprinting then leads to these traits being used as species recognition mechanisms. The second issue addressed in this paper is the role of sexual selection in adaptive radiation, again concentrating on birds. Ecological differences between species include large differences in size, which may in themselves be sufficient for species recognition, and differences in habitat, which seem to evolve frequently and at all stages of an adaptive radiation. Differences in habitat often cause song and plumage patterns to evolve as a result of sexual selection for efficient communication. Therefore sexual selection is likely to have an important role in generating premating isolating mechanisms throughout an adaptive radiation. It is also possible that sexual selection, by creating more allopatric species, creates more opportunity for ecological divergence to occur. The limited available evidence does not support this idea. A role for sexual selection in accelerating ecological diversification has yet to be demonstrated.  相似文献   

14.
Many species have elaborate and complex coloration and patterning, which often differ between the sexes. Sexual selection may increase the size or intensity of color patches (elaboration) in one sex or drive the evolution of novel signal elements (innovation). The latter potentially increases color pattern complexity. Color pattern complexity may also be influenced by ecological factors related to predation and environment; however, very few studies have investigated the effects of both sexual and natural selection on color pattern complexity across species. We used a phylogenetic comparative approach to examine these effects in 85 species and subspecies of Australian dragon lizards (family Agamidae). We quantified color pattern complexity by adapting the Shannon–Wiener diversity index. There were clear sex differences in color pattern complexity, which were positively correlated with both sexual dichromatism and sexual size dimorphism, consistent with the idea that sexual selection plays a significant role in the evolution of color pattern complexity. By contrast, we found little evidence of a link between environmental factors and color pattern complexity on body regions exposed to predators. Our results suggest that sexual selection rather than natural selection has led to increased color pattern complexity in males.  相似文献   

15.
The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research.  相似文献   

16.
Identifying general patterns of adaptive coloration in animals can help to elucidate the evolutionary processes that generate them. We examined the evolution of colour patterns in Australian agamid lizards, a morphologically and ecologically diverse group that relies primarily on visual communication. We tested whether certain types of colour (yellow–reds and black) were likely to be used as sexual signals, as indicated by their association with indices of sexual selection, namely, sexual dichromatism and sexual dimorphism in body size and head shape. We then tested whether sexually dichromatic colours are associated with specific patterns (uniform, mottled, striped, blotched, reticulated) or ecological variables such as habitat openness, arboreality, and substrate type. The presence of yellow–red on lateral and ventral body regions and black on ventral body regions was significantly more common in males than females. Lateral yellow–red in males was associated with the total extent of sexual dichromatism and size dimorphism, whereas ventral yellow–red was associated with sexual dichromatism. Both lateral and ventral yellow–red were associated with uniform patterning, suggesting that sexual signals in male agamid lizards may often comprise uniform patches or flushes of yellow–red. Although ventral black coloration was more prevalent on males (i.e. strongly sexually dichromatic), it was not associated with indices of sexual selection, suggesting that, in agamid lizards, yellow–red coloration is more likely to be sexually selected than black. Sexually dichromatic coloration was not strongly associated with any of the ecological variables measured. We found some associations, however, between female dorsal patterns and ecological variables, suggesting that female patterns are influenced by natural selection. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 101–112.  相似文献   

17.
Males and females can be under different evolutionary pressures if sexual and natural selection is differentially operating in each sex. As a result, many species have evolved sexual dichromatism, or differences in coloration between sexes. Although sexual dichromatism is often used as an index of the magnitude of sexual selection, sexual dichromatism is a composite trait. Here, we examine the evolution of sexual dichromatism in one of the largest and most ecologically diverse families of birds, the tanagers, using the avian visual perspective and a species‐level phylogeny. Our results demonstrate that the evolutionary decreases of sexual dichromatism are more often associated with larger and more frequent changes in male plumage coloration, and evolutionary increases are not more often associated with larger changes in either sex. Furthermore, we show that the crown and ventral plumage regions are correlated with sexual dichromatism in males, and that only male plumage complexity is positively correlated with sexual dichromatism. Finally, we demonstrate that light environment is important in shaping both plumage brilliance and complexity. By conducting a multilevel analysis of plumage evolution in males and females, we show that sexual dichromatism evolves via a mosaic of sexual and natural selection in both sexes.  相似文献   

18.
Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from “ancestral” to “derived” strategies. We predicted that generalism, r‐selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K‐selection, sexual dimorphism, and residence/territoriality as habitat stabilized (collectively called B strategy). We analyzed the correlated evolution of four syndromes, summarizing the covariation between 53 traits, respectively, involved in ecological specialization, r‐K gradient, sexual selection, and dispersal/social behaviors in 81 species representative of Fringillidae, a bird family with available natural history information and that shows variability for all these traits. The ancestrality of strategy A was supported for three of the four syndromes, the ancestrality of generalism having a weaker support, except for the core group Carduelinae (69 species). It appeared that two different B‐strategies evolved from the ancestral state A, both associated with highly predictable environments: one in poorly seasonal environments, called B1, with species living permanently in lowland tropics, with “slow pace of life” and weak sexual dimorphism, and one in highly seasonal environments, called B2, with species breeding out‐of‐the‐tropics, migratory, with a “fast pace of life” and high sexual dimorphism.  相似文献   

19.
Snell-Rood EC  Badyaev AV 《Oecologia》2008,157(3):545-551
Ecological gradients in natural and sexual selection often result in evolutionary diversification of morphological, life history, and behavioral traits. In particular, elevational changes in habitat structure and climate not only covary with intensity of sexual selection in many taxa, but may also influence evolution of mating signals. Here we examined variation in courtship song in relation to elevation of breeding across cardueline finches-a subfamily of birds that occupies the widest elevational range of extant birds and shows extensive variation in life histories and sexual selection along this range. We predicted that decrease in sexual selection intensity with elevation of breeding documented in this clade would result in a corresponding evolutionary reduction in elaboration of courtship songs. We controlled for the effects of phylogeny, morphology, and habitat structure to uncover a predicted elevational decline in courtship song elaboration; species breeding at lower elevations sang more elaborated and louder songs compared to their sister species breeding at higher elevations. In addition, lower elevation species had longer songs with more notes, whereas frequency components of song did not vary with elevation. We suggest that changes in sexual selection account for the observed patterns of song variation and discuss how elevational gradient in sexual selection may facilitate divergence in mating signals potentially reinforcing or promoting speciation.  相似文献   

20.
Extant hypotheses predict that, in the face of sexual selection, avian song and plumage may evolve in a concerted fashion, in an antagonistic fashion, or in ways unrelated to each other. To test these ideas regarding which traits sexual selection targets, and the consequences for other traits, we analyzed patterns of song complexity and plumage dimorphism in 56 species of wood warblers (Parulinae). Overall, males of more dimorphic species sang shorter songs more often, but did not have more complex songs. However, when monomorphic species were excluded from the analysis, we found that the total time spent singing and repertoire size increased with plumage dimorphism. Monomorphic species are predominantly ground-nesters and the greater risk of nest predation for these species may constrain males from becoming more visually conspicuous. Thus, sexual selection may have been restricted to targeting song in these species. Even though song may have been the only target of sexual selection in ground-nesting species, overall, song in those species is not more complex than in species that nest above the ground. We propose that traits targeted by sexual selection evolve in concert, except when constrained by some ecological factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号