首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.

Background

Sister chromatid cohesion mediated by the cohesin complex is essential for accurate chromosome segregation during mitosis and meiosis. Loading of cohesin onto chromosomes is dependent on another protein complex called kollerin, containing Nipbl/Scc2 and Mau2/Scc4. Nipbl is an evolutionarily conserved large protein whose haploinsufficiency in humans causes a developmental disorder called Cornelia de Lange syndrome. Although the function of Nipbl homologues for chromosome cohesion in meiotic cells of non-vertebrate models has been elucidated, Nipbl has not been characterized so far in mammalian spermatocytes or oocytes.

Findings

Here we describe our analyses on the expression and localization of Nipbl in nuclei of mouse spermatocytes and oocytes at different stages of meiotic prophase. In both spermatocytes and oocytes we found that Nipbl is associated with the axial/lateral element of the synaptonemal complex (AE/LE) to which cohesin also localizes. Interestingly, Nipbl in spermatocytes, but not in oocytes, dissociates from the AE/LE at mid-pachytene stage coincident with completion of DNA double-strand break repair.

Conclusions

Our data propose that cohesin loading activity is maintained during early stages of meiotic prophase in mammalian spermatocytes and oocytes.
  相似文献   

5.
6.
7.
8.
9.

Background

The Clusters of Orthologous Groups (COGs) of proteins systematize evolutionary related proteins into specific groups with similar functions. However, the available databases do not provide means to assess the extent of similarity between the COGs.

Aim

We intended to provide a method for identification and visualization of evolutionary relationships between the COGs, as well as a respective web server.

Results

Here we introduce the COGcollator, a web tool for identification of evolutionarily related COGs and their further analysis. We demonstrate the utility of this tool by identifying the COGs that contain distant homologs of (i) the catalytic subunit of bacterial rotary membrane ATP synthases and (ii) the DNA/RNA helicases of the superfamily 1.

Reviewers

This article was reviewed by Drs. Igor N. Berezovsky, Igor Zhulin and Yuri Wolf.
  相似文献   

10.
11.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

12.
13.
Yang Y  Zhu M  Wu L  Zhou J 《BMC genomics》2008,9(Z2):S5

Background

Using genomic DNA as common reference in microarray experiments has recently been tested by different laboratories. Conflicting results have been reported with regard to the reliability of microarray results using this method. To explain it, we hypothesize that data processing is a critical element that impacts the data quality.

Results

Microarray experiments were performed in a γ-proteobacterium Shewanella oneidensis. Pair-wise comparison of three experimental conditions was obtained either with two labeled cDNA samples co-hybridized to the same array, or by employing Shewanella genomic DNA as a standard reference. Various data processing techniques were exploited to reduce the amount of inconsistency between both methods and the results were assessed. We discovered that data quality was significantly improved by imposing the constraint of minimal number of replicates, logarithmic transformation and random error analyses.

Conclusion

These findings demonstrate that data processing significantly influences data quality, which provides an explanation for the conflicting evaluation in the literature. This work could serve as a guideline for microarray data analysis using genomic DNA as a standard reference.
  相似文献   

14.

Background

Diabetes induces many complications including reduced fertility and low oocyte quality, but whether it causes increased mtDNA mutations is unknown.

Methods

We generated a T2D mouse model by using high-fat-diet (HFD) and Streptozotocin (STZ) injection. We examined mtDNA mutations in oocytes of diabetic mice by high-throughput sequencing techniques.

Results

T2D mice showed glucose intolerance, insulin resistance, low fecundity compared to the control group. T2D oocytes showed increased mtDNA mutation sites and mutation numbers compared to the control counterparts. mtDNA mutation examination in F1 mice showed that the mitochondrial bottleneck could eliminate mtDNA mutations.

Conclusions

T2D mice have increased mtDNA mutation sites and mtDNA mutation numbers in oocytes compared to the counterparts, while these adverse effects can be eliminated by the bottleneck effect in their offspring. This is the first study using a small number of oocytes to examine mtDNA mutations in diabetic mothers and offspring.
  相似文献   

15.
16.

Background

Gene copy number divergence between species is a form of genetic polymorphism that contributes significantly to both genome size and phenotypic variation. In plants, copy number expansions of single genes were implicated in cultivar- or species-specific tolerance of high levels of soil boron, aluminium or calamine-type heavy metals, respectively. Arabidopsis halleri is a zinc- and cadmium-hyperaccumulating extremophile species capable of growing on heavy-metal contaminated, toxic soils. In contrast, its non-accumulating sister species A. lyrata and the closely related reference model species A. thaliana exhibit merely basal metal tolerance.

Results

For a genome-wide assessment of the role of copy number divergence (CND) in lineage-specific environmental adaptation, we conducted cross-species array comparative genome hybridizations of three plant species and developed a global signal scaling procedure to adjust for sequence divergence. In A. halleri, transition metal homeostasis functions are enriched twofold among the genes detected as copy number expanded. Moreover, biotic stress functions including mostly disease Resistance (R) gene-related genes are enriched twofold among genes detected as copy number reduced, when compared to the abundance of these functions among all genes.

Conclusions

Our results provide genome-wide support for a link between evolutionary adaptation and CND in A. halleri as shown previously for Heavy metal ATPase4. Moreover our results support the hypothesis that elemental defences, which result from the hyperaccumulation of toxic metals, allow the reduction of classical defences against biotic stress as a trade-off.
  相似文献   

17.

Background

Subcellular localization of coding and non-coding RNAs has emerged as major regulatory mechanisms of gene expression in various cell types and many organisms. However, techniques that enable detection of the subcellular distribution of these RNAs with high sensitivity and high resolution remain limited, particularly in vertebrate adult tissues and organs. In this study, we examined the expression and localization of mRNAs encoding Pou5f1/Oct4, Mos, Cyclin B1 and Deleted in Azoospermia-like (Dazl) in zebrafish and mouse ovaries by combining tyramide signal amplification (TSA)-based in situ hybridization with paraffin sections which can preserve cell morphology of tissues and organs at subcellular levels. In addition, the distribution of a long non-coding RNA (lncRNA), lncRNA-HSVIII, in mouse testes was examined by the same method.

Results

The mRNAs encoding Mos, Cyclin B1 and Dazl were found to assemble into distinct granules that were distributed in different subcellular regions of zebrafish and mouse oocytes, suggesting conserved and specific regulations of these mRNAs. The lncRNA-HSVIII was first detected in the nucleus of spermatocytes at prophase I of the meiotic cell cycle and was then found in the cytoplasm of round spermatids, revealing expression patterns of lncRNA during germ cell development. Collectively, the in situ hybridization method demonstrated in this study achieved the detection and comparison of precise distribution patterns of coding and non-coding RNAs at subcellular levels in single cells of adult tissues and organs.

Conclusions

This high-sensitivity and high-resolution in situ hybridization is applicable to many vertebrate species and to various tissues and organs and will be useful for studies on the subcellular regulation of gene expression at the level of RNA localization.
  相似文献   

18.
19.
20.

Background

With the threat of emerging infectious diseases such as avian influenza, whose natural hosts are thought to be a variety of wild water birds including duck, we are armed with very few genomic resources to investigate large scale immunological gene expression studies in avian species. Multiple options exist for conducting large gene expression studies in chickens and in this study we explore the feasibility of using one of these tools to investigate gene expression in other avian species.

Results

In this study we utilised a whole genome long oligonucleotide chicken microarray to assess the utility of cross species hybridisation (CSH). We successfully hybridised a number of different avian species to this array, obtaining reliable signals. We were able to distinguish ducks that were infected with avian influenza from uninfected ducks using this microarray platform. In addition, we were able to detect known chicken immunological genes in all of the hybridised avian species.

Conclusion

Cross species hybridisation using long oligonucleotide microarrays is a powerful tool to study the immune response in avian species with little available genomic information. The present study validated the use of the whole genome long oligonucleotide chicken microarray to investigate gene expression in a range of avian species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号