首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  Dendrolimus tabulaeformis overwinters as third to fourth instar larvae at short days in autumn. Using 24-h light–dark cycles, the photoperiodic response curves were similar at 24 and 28°C. The critical night length was 9 h 20 min at 24°C and 9 h 50 min at 28°C. Under non-24 h light–dark cycles, duration of scotophase proved crucial in the determination of diapause. In night interruption experiments using 24-h light–dark cycle, a 1-h light pulse falling 8 h in the darkness strongly averted diapause in comparison with other light pulses. Nanda–Hamner experiments showed two weak troughs of diapause inhibition, suggesting the possible involvement of the circadian system. However, Bünsow experiments did not support the evidence of the involvement of circadian oscillatory system in photoperiodic time measurement. These results suggest that photoperiodic time measurement in this moth shows a non-oscillatory 'hourglass-like' response model or a rapidly damping oscillator model.  相似文献   

2.
Insects inhabiting the temperate zones measure seasonal changes in day or night length to enter the overwintering diapause. Diapause induction occurs after the duration of the night exceeds a critical night length (CNL). Our understanding of the time measurement mechanisms is continuously evolving subsequent to Bünning's proposal that circadian systems play the clock role in photoperiodic time measurement (Bünning, 1936). Initially, the photoperiodic clocks were considered to be either based on circadian oscillators or on simple hour‐glasses, depending on ‘positive’ or ‘negative’ responses in Nanda–Hamner and Bünsow experiments (Nanda & Hammer, 1958; Bünsow, 1960). However, there are also species whose responses can be regarded as neither ‘positive’, nor as ‘negative’, such as the Northern Drosophila species Drosophila ezoana, which is investigated in the present study. In addition, modelling efforts show that the ‘positive’ and ‘negative’ Nanda–Hamner responses can also be provoked by circadian oscillators that are damped to different degrees: animals with highly sustained circadian clocks will respond ‘positive’ and those with heavily damped circadian clocks will respond ‘negative’. In the present study, an experimental assay is proposed that characterizes the photoperiodic oscillators by determining the effects of non‐24‐h light/dark cycles (T‐cycles) on critical night length. It is predicted that there is (i) a change in the critical night length as a function of T‐cycle period in sustained‐oscillator‐based clocks and (ii) a fixed night‐length measurement (i.e. no change in critical night length) in damped‐oscillator‐based clocks. Drosophila ezoana flies show a critical night length of approximately 7 h irrespective of T‐cycle period, suggesting a damped‐oscillator‐based photoperiodic clock. The conclusion is strengthened by activity recordings revealing that the activity rhythm of D. ezoana flies also dampens in constant darkness.  相似文献   

3.
Wei X  Xue F  Li A 《Journal of insect physiology》2001,47(12):1367-1375
Pseudopidorus fasciata enters diapause as fourth instar larvae at short day lengths. Using 24-h light-dark cycles, the photoperiodic response curves in this species appeared to be similar with a critical night length of 10.5h at temperatures below 30 degrees C. At an average temperature of 30.5 degrees C, the critical night length had shifted to between 15 and 17h. In experiments using non-24-h light-dark cycles, it was clearly demonstrated that the dark period (scotophase) was the decisive phase for a diapause determination. In night interruption experiments using 24-h light-dark cycles, a 1-h light pulse at LD12:12 completely reversed the long night effect and averted diapause in all treatments. At LD 9:15 light pulses of 1-h, 30- or 15-min also averted diapause effectively when both the pre-interruption (D(1)) or the post-interruption scotophases (D(2)) did not exceed the critical night length. If D(1) or D(2) exceeded the critical night length diapause was induced. The most crucial event for the photoperiodic time measurement in this species is the length of the scotophase. A 10-min light pulse placed in the most photosensitive phase reversed diapause in over 50% of the individuals. Night interruption experiments under non-24-h light-dark cycles indicated that the photoperiodic clock measured only D(1) regardless of the length of D(2), suggesting that the most inductive cycles are often those in which L+D are close to 24h. In resonance experiments, this species showed a circadian periodicity at temperatures of 24.5 or 26 degrees C, but not at 30.5 and 23.3 degrees C. On the other hand, Bünsow and skeleton photoperiod experiments failed to reveal the involvement of a circadian system in this photoperiodic clock. These results suggest the photoperiodic clock in this species is a long-night measuring hourglass and the circadian effect found in the final expression of the photoperiodic response in the resonance experiments may be caused by a disturbing effect of the circadian system in unnatural regimes.  相似文献   

4.
Megoura produces parthenogenetic virginoparae in long day conditions, gamic oviparae in short days. The nature of this photoperiodic response has been analysed by rearing parent apterae in a wide range of circadian and non-circadian light cycles. By varying the light and dark components independently in a two-component cycle it has been established that the time measuring function is associated primarily with the dark period. There is no evidence that an endogenous circadian oscillation is implicated: thus (a) the ‘short day’ response is abolished by ‘night interruptions’ positioned in the early or late night. But this bimodal response pattern remains unchanged when the duration of the ‘main’ photoperiod is varied from ca. 6 hr to at least 25·5 hr. The stability of the maxima within the scotophase is inconsistent with the ‘coincidence’ models of photoperiodic timing that have been proposed. It is suggested that the essential timing process operates on the hour-glass principle, beginning anew with the onset of each period of darkness; (b) night interruption experiments employing very long (up to 72 hr) scanned dark periods yielded response maxima explicable in terms of the hour-glass hypothesis but did not reveal any circadian relationship between the maxima.The ‘dark reaction’ comprises a sequence of four stages, definable by the effects of light. Stage 1, extending from dark hr 0 to ca. 2·5, is fully photoreversible: at the next dark period the entire timing sequence is repeated up to the 9·5 hr critical night length. Towards the end of stage 1 reversibility is gradually lost and after a light interruption the reaction is resumed from a later time equivalent than dark hr 0; the subsequent critical night length is therefore reduced. The extent of the photoreversal is related to light duration. The period of maximum light insensitivity (stage 2) is attained at the end of the fourth hour. From ca. dark hr 5 to just short of the critical night length light exerts an increasingly promotive action which favours the production of virginoparae. This dark process is not photoreversible. Stage 4, which begins at hr 9·5, marks the end of the timing sequence. Light will not then annul the non-promotive action of the previous long night.Light has three effects which are determined by its duration and position within the cycle. The two terminal effects, mentioned above, are associated with the interception of dark stages 1 and 3 by either short (1 hr) or longer photoperiods. Light also prepares or primes the dark period timer. Thus the critical length is increased, and timing accuracy lost, if the preceding photoperiod is less than ca. 6 hr. Light during stage 4 has a priming action but no terminal function. Repeated cycles are ‘read’ in various ways, depending on the cycle structure. For example, if light intercepts stage 3, a two-component cycle is interpreted as the overlapping sequence light/dark/light. One and the same photoperiod then acts terminally in respect of the preceding dark period and as a primer for the next dark period.There is also a mechanism for summing the promotive effects produced by repeated interruption of dark stage 3. With complex (four-component) cycles both halves of the same cycle may contribute. ‘Product accumulation’ falls below threshold if the frequency of presentation of a given promotive cycle is too low. This occurs if there are very long, relatively non-promotive dark components. Such cycles are accepted as ‘continuous darkness’.  相似文献   

5.
This review considers the effects of temperature on insect diapause induction and the photoperiodic response, and includes constant temperature, temperature cycles, pulses and steps in daily light–dark cycles, constant darkness and in constant light, all with reference to various circadian‐based “clock” models. Although it is a comparative survey, it concentrates on two species, the flesh fly Sarcophaga argyrostoma and its pupal parasite Nasonia vitripennis, which possess radically different photoperiodic mechanisms, although both are based upon the circadian system. Particular attention is given to the effects of daily thermoperiod in darkness and to low and high temperature pulses in conjunction with a daily light–dark cycle, treatments that suggest that S. argyrostoma “measures” night length with a “clock” of the external coincidence type. However, N. vitripennis responds to seasonal changes in photoperiod with an internal coincidence device involving both “dawn” and “dusk” oscillators. Other species may show properties of both external and internal coincidence. Although the precepts of external coincidence have been well formulated and supported experimentally, those for internal coincidence remain obscure.  相似文献   

6.
The mature larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae) enters facultative diapause in response to short‐day conditions in the autumn (August–September). Diapause induction and photoperiodic clock mechanism were investigated in C. suppressalis larvae reared on an artificial diet in the present study. The critical night length for diapause induction was about 9 h 53 min to 10 h 39 min at 22 to 28°C. The third‐instar larvae were found to be relatively sensitive to diapause induction. Photoperiodic response under non‐24‐h light–dark cycles showed that scotophase length played an essential role in the induction of larval diapause in C. suppressalis, and consecutive exposure to long‐night cycles was necessary for a high diapause incidence. In the Nanda–Hamner experiment, diapause incidence peaked at scotophase of 12 h and dropped rapidly at scotophases > 24 h. In the Bünsow experiment, diapause incidence was clearly suppressed, especially at the light pulse located 8 h in the scotophase. Both the Nanda–Hamner and Bünsow experiments showed no rhythmic fluctuations with a period of about 24 h; thus the photoperiodic clock in C. suppressalis is a non‐oscillatory hourglass timer or a rapidly damping circadian oscillator.  相似文献   

7.
The pine caterpillar, Dendrolimus punctatus (Walker) (Lepidoptera: Lasiocampidae), is a multivoltine pest of pine trees in China, overwintering as larvae. Winter diapause was induced by short day length. The critical night length was about 10 h 40 min at 25, 28, and 31 °C in the field, showing a temperature‐compensated diapause induction. Transfer experiments from a short night (L16:D8) to a long night (L12:D12) or vice versa at different times after hatching showed that sensitivity to day length was restricted to the first 14 days; the required day number for a 50% response at 25 °C was about 3.5 days for short nights but 7.5 days for long nights, indicating that short nights are photoperiodically more effective. When four successive short nights (L16:D8) were used to interrupt the long‐night regime (L12:D12) at different development stages and vice versa, the results showed that the highest sensitivity to photoperiod occurred on the 4th?8th day, corresponding to the second larval instar. Experiments of alternating short‐night (L16:D8) and long‐night (L12:D12) cycles during the larval period showed that the information of short nights as well as long nights could be accumulated. By rearing the larvae under conditions other than 24‐h light–dark cycles, we clearly showed that the dark period (scotophase) played a major role in the determination of diapause. The Nanda‐Hamner and Bünsow experiments failed to reveal rhythmic fluctuations with a period of about 24 h in the occurrence of diapause. Therefore, the photoperiodic clock in D. punctatus is an hourglass timer or a damped circadian oscillator.  相似文献   

8.
Photoperiodic control of diapause induction was investigated in the short-day species, Colaphellus bowringi, which enters summer and winter diapause as adult in the soil. Photoperiodic responses at 25 and 28 degrees C revealed a critical night length between 10 and 12 h; night lengths > or =12 h prevented diapause, whereas night lengths <12 h induced summer diapause in different degree. Experiments using non-24-h light-dark cycles showed that the duration of scotophase played an essential role in the determination of diapause. Night-interruption experiments with T=24 h showed that diapause was effectively induced by a 2-h light pulse in most scotophases; whereas day-interruption experiments by a 2-h dark break had a little effect on the incidence of diapause. The experiments of alternating short-night cycles (LD 16:8) and long-night cycles (LD 12:12) during the sensitive larval period showed that the information of short nights as well as long nights could be accumulated. Nanda-Hamner experiments showed three declining peaks of diapause at 24 h circadian intervals. Bünsow experiments showed two very weak peaks for diapause induction, one being 8 h after lights-off, and another 8 h before lights-on, but it did not show peaks of diapause at a 24 h interval. These results suggest that the circadian oscillatory system constitutes a part of the photoperiodic clock of this beetle but plays a limited role in its photoperiodic time measurement.  相似文献   

9.
Abstract. Both oscillator and hourglass features are found in the photoperiodic response that controls the pupal winter diapause of Mamestra brassicae. The expression of oscillatory response to extended long-night cycles is temperature dependent, i.e. circadian resonance appears at 23 and 25oC but not at 20 and 28oC. At 20oC, scanning of extended scotophases by a short light pulse does not reveal any clear circadian rhythmicity. However, a circadian feature of the photoperiodic response is indicated even at 20oC by a bistability phenomenon, i.e. either one of the two dark periods in symmetrical skeleton photoperiods determines the diapause response depending on the phase angle with the preceding (entraining) light-dark cycles. At 20 and 25oC, the incidence of diapause increases as a function of the number of light–dark cycles regardless of the cycle length (T) , if T is 24 h or 2 X 24h (with a 12 h light period). A non-diel cycle (r=36h) is less effective, suggesting that disturbance of the circadian organization partly impairs the diapause-inducing function. The inductive effect of a long night is largely affected by temperature, and becomes saturated with eight cycles at 20oC and 14 cycles at 25oC. Presumably, an hourglass mechanism measures the dark time, and a circadian component involved in some later sequence of the photoperiodic response may or may not be expressed depending on the mode of interaction between them.  相似文献   

10.
The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma   总被引:1,自引:0,他引:1  
Larval cultures of the flesh-fly, Sarcophaga argyrostoma, were raised in experimental light cycles with periods (T) of 21 to 72 hr, each cycle containing a photoperiod of 4 to 20 hr of white light. This ‘resonance’ technique revealed periodic maxima (~24 hr apart) of pupal diapause, thereby demonstrating an endogenous circadian component in the photoperiodic clock. The positions of these maxima of pupal diapause suggested that the oscillation, like that controlling the pupal eclosion rhythm in Drosophila pseudoobscura, is ‘damped out’ by photoperiods longer than about 11 to 12 hr, but restarts at dusk whereupon it runs with circadian periodicity in a protracted dark period. With photoperiods shorter than 12 hr, however, the two diapause maxima were less than 24 hr apart, suggesting that an additional component, possibly a ‘dawn hour-glass’, was modifying the position of the first peak.Both photoperiod and the period of the driving light cycle (T) were shown to affect the length of larval development (the sensitive period) and the number of calendar days needed to raise the incidence of pupal diapause to 50 per cent (the required day number, RDN). Peaks of diapause induction were shown to be the result of an interaction between a long sensitive period (slow development) and a low RDN, whereas troughs in diapause induction were the result of an interaction between a short sensitive period (fast development) and a higher RDN.Larvae of S. argyrostoma are unable to distinguish (in a photoperiodic sense) between 12 and 18 hr of red light (600 nm).  相似文献   

11.
陈元生  涂小云  陈超  匡先钜  薛芳森 《生态学报》2012,32(18):5770-5776
至今,所测试昆虫的光周期反应均表明,光周期反应对暗期干扰高度敏感,短暂的光脉冲都可在不同程度上逆转长夜效应,抑制滞育的发生。在研究了棉铃虫Helicoverpa armigera泰安种群(36.15°N,116.59°E)和喀佐种群(41.34°N,120.27°E)光周期反应的基础上,在滞育诱导的短光周期下(L12:D12和L9:D15),分别测试了暗期不同时段1h光脉冲对这两个不同地理种群滞育抑制的影响。25和22℃下的光周期反应显示了泰安种群在长暗期11—14 h的滞育率均显著低于喀佐种群;泰安种群的临界暗长分别为11.7 h和11.5 h,喀佐种群分别为10.5 h和10.3 h,泰安种群均比喀佐种群长1.2 h。在所测试的暗期干扰实验中,除了极少数光脉冲干扰点外,泰安种群蛹滞育率显著低于喀佐种群,但两者的滞育反应曲线基本相似。在短光周期L9:D15下,泰安种群和喀佐种群均显示了光脉冲落入暗期的第9—11小时最有效地抑制了滞育的发生。在短光周期L12∶D12下,泰安种群和喀佐种群在25℃时均显示了光脉冲落入暗期的第3—4小时和第10小时导致了最低的滞育发生;但在22℃时,喀佐种群只在暗期的第3—4小时显示了最高的滞育抑制。这些结果揭示了偏南的泰安种群对暗期干扰的敏感性强于偏北的喀佐种群,但这两个地理种群的最高光敏感位点基本相同。  相似文献   

12.
Night interruption experiments were used to investigate the behavior of the clock controlling diapause induction in the mosquito, Aedes atropalpus. The data from these experiments indicated that the clock included a circadian oscillator which was phase set at dusk. Following this event the oscillator proceeded to drive a nightly rhythm of sensitivity to light. This rhythm included a photoinducible phase where light interruption inhibited diapause. The photoinducible phase was fixed, occurring 7 to 9 hr after dusk in all photoperiod regimens tested. The photoinducible phase was followed by a refractory phase, which continued until dawn. During the refractory period light did not inhibit diapause. These observations indicated that the circadian clock behaved like an interval timer which was set at dusk. The rhythm of sensitivity to light, an inherited time scale, limited the induction of diapause to seasonal periods when nights were longer than 9 hr. As a result, diapause was induced only when the daylength dropped below the critical photoperiod of L15:D9 (hours of light:hours of dark).A ‘T’ experimental design was used to confirm the importance of the length of the night in clock controlled induction of diapause in this mosquito.  相似文献   

13.
Plodia interpunctella Hübner (Lepidoptera: Pyralidae) comprises a model insect to analyse the photoperiodic time‐measuring system controlling its larval diapause. In the present study, the effective length of light pulse in night interruption experiments is determined at 25 °C. Various lengths of light pulse are tested by inserting them at the midnight of an LD 12 : 12 h photoperiod. When the light pulse is 15 or 30 min, the incidence of diapause is 86%. To inhibit the induction of diapause effectively, a light pulse of 1.75–2 h is needed. The incidence of diapause is 12% under an LD 12 : 5 : 2 : 5 h photoperiod. To determine the precise role of the light pulse, 2‐h light pulses placed at the midnight of an LD 12 : 12 h photoperiod are disrupted systematically by darkness. When a 2‐h light pulse is disrupted by 15 min of darkness, diapause is generally prevented (< 29%) regardless of the temporal position of darkness. Longer disruption by darkness induces diapause moderately (37–67%). A Bünsow experiment is also conducted at 25 and 20 °C, in which the main photophase of 12 h of light is combined with 24–72‐h scotophases scanned by a 2‐h light pulse. The photoperiodic cycle length tested, therefore, varies in the range 36–84 h. In each cycle length, the incidence of diapause fluctuates as the light pulse moves toward dawn. However, no regular and circadian changes in the percentage diapause are observed in relation to diapause determination.  相似文献   

14.
Larval cultures of the flesh-fly Sarcophaga argyrostoma maintained in circadian ‘resonance’ experiments produced a high incidence of pupal diapause when the period of the light cycle was close to (T) 24, 48 or 72 hr, but a low incidence of diapause at T 36, 60 or 84 hr. Cultures pre-programmed for diapause by exposing pregnant females to long nights indicated the induction of non-diapause development at T 36, 60 and 84, whereas cultures pre-programmed for diapause-free development by exposing females to continuous light indicated the induction of diapause at T 24, 48 and 72.Raising the temperature reduced the heights of the diapause peaks whereas lowering the temperature raised them. With progeny from long-night-reared flies the lowest temperature tested (18°C) produced a result indistinguishable from an ‘hour-glass’ response, warning that ‘negative’ resonance experiments may merely indicate non-permissive conditions for demonstrating the involvement of circadian rhythmicity in insect photoperiodism.The results of the ‘resonance’ experiments and the effects of temperature are interpreted in terms of a multioscillator ‘external coincidence-photoperiodic counter’ model for the clock.  相似文献   

15.
When a light pulse of 1 h duration was given 3 h after lights off in a photoperiod of 11 h light : 13 h dark (LD 11 : 13) at 20°C, the phase of the major peak of locomotor activity rhythm in Delia antiqua was delayed for approximately 0.6 h. In contrast, it was advanced by approximately 0.6 h by a light pulse given 9 h after lights off. It is suggested that in the circadian clock, a pulse falling in the early scotophase is taken as a new dusk and a pulse falling in the late scotophase is taken as a new dawn. Although a sharply defined critical photoperiod did not exist in the diapause response to photoperiod in D. antiqua, the percentage of pupal diapause decreased by these pulses in LD 11 : 13 at 20°C. The effect of a 15 min light pulse on both locomotor activity rhythm and pupal diapause induction was stronger at 3 h than at 9 h after lights off, while a 1 min light pulse was ineffective at both times. The parallel effects of light pulse on locomotor activity rhythm and diapause response might be based on the same chronobiological functions.  相似文献   

16.
Abstract.  The Indian meal moth Plodia interpunctella Hubner (Lepidoptera: Pyralidae) measures night length and enters diapause as a last-instar larva. To examine the role of photophase on dark-time measurement, the main LD 7 : 17 h photoperiod is disrupted by various lengths of darkness at 25 °C. When the light phase is not disrupted, the incidence of diapause is 76%. As the dark pulse disrupting a 7-h photophase becomes longer, the incidence of diapause decreases. To detect the dynamic kinetics of the time-measuring process, the main scotophase of 17 h is scanned by a 2-h light pulse. When the dark pulse in a 7-h photophase is fixed at 1 h after dawn and its duration is varied systematically from 1 to 3 h, or when the end of the dark pulse is fixed at 1 h before dusk, diapause is prevented completely by a 2-h light pulse inserted in the middle of 17-h darkness. These results are compared with those of a single night interruption of a 17-h scotophase with a 2-h light pulse but with an intact 7-h photophase. The disruption of a 7-h photophase by a dark pulse shifts the descending and ascending slopes of the response curve to some extent toward dawn and dusk, respectively, indicating that the dark pulse tends to shorten the critical length of dark time for diapause induction. When the main photophase (7 h) is interrupted by a 1-h dark pulse at 3–4 h after dawn, the 2-h scanning light pulse in the main scotophase (17 h) appears to act effectively as a dusk signal in the early scotophase. However, those in the mid- and late scotophase do not define the critical night length from dusk as sharply as for the critical night length from a 2-h light pulse to dawn. The results indicate the importance of photophase in the dark-time measurement.  相似文献   

17.
The incidence of diapause in the spider mite Tetranychus urticae was predicted for various photoperiodic regimes, according to the external coincidence model of photoperiodic time measurement. A phase response curve was constructed for the hypothetical photoperiodic oscillator in these mites: entrainment of this photoperiodic oscillator to a variety of ‘complete’ and ‘skeleton’ photoperiods was calculated using a transformation method for circadian rhythms. The external coincidence model proved adequate to describe experimental results with T. urticae in ‘complete’ photoperiods (T = 24 hr), symmetrical ‘skeleton’ photoperiods (T = 24 hr), asymmetrical ‘skeleton’ photoperiods (T = 24 hr) (night-interruption experiments), and ‘resonance’ experiments, in which the light component of a light/dark cycle was held constant at 8 hr and the dark component was varied over a wide range in successive experiments, providing cycles with period lengths up to 92 hr. The external coincidence model proved inadequate to explain results obtained in a ‘T-experiment’ with T. urticae comprising 1 hr pulses of light in a cycle of LD1:17.5 (T = 18.5 hr) with the first pulse of the train starting at different circadian phases. The validity and limitations of the external coincidence model as an explanation of photoperiodic time measurement in T. urticae are discussed in view of the above results.  相似文献   

18.
Thyrassia penangae enters winter diapause as a prepupa in a cocoon. Photoperiodism of diapause induction was systematically investigated in this moth. The photoperiodic response curves under 24-h light-dark cycles showed that this insect is a typical long-day species. The critical daylength was 13 h 30 min at 25 °C, 13 h at 30 °C and 12 h 20 min at 28 °C. Transferring experiments from a short day (LD 12:12) to a long day (LD 15:9) or vice versa indicated that photoperiodic sensitivity mainly occurs during the larval period. In experiments using non-24-h light-dark cycles, when the length of photophase exceeded the critical daylength (13.5 h), was diapause inhibited effectively, even when the length of scotophase exceeded the critical nightlength (10.5 h). Only when a long scotophase was combined with a short photophase, diapause was induced effectively. This result suggests that daylength measurement is more important than nightlength measurement in T. penangae. Night interruption experiments under 24-h light-dark cycles exhibited two points of apparent light sensitivity, but the photosensitive position was highly influenced by temperature and the length of scotophase. Nanda-Hamner experiments failed to reveal the involvement of a circadian system in this photoperiodic time measurement. All light-dark cycles from LD 12:12 to LD 12:72 resulted in a short day response, and all cycles from LD 14:4 to LD 14:72 resulted in a long day response, suggesting that photoperiodic time measurement in this moth is performed by a day-interval timer or an hourglass-like clock.  相似文献   

19.
Females of Nasonia vitripennis were maintained in light cycles from 12 to 72 hr in length, with 4 to 28 hr photoperiods, and their offspring examined for larval diapause. This ‘resonance’ technique revealed periodic maxima of diapause induction, about 24 hr apart. The ‘ascending slopes’ of these maxima appeared to obtain their principal time cue from dusk and the ‘descending slopes’ from dawn. This suggests that two independent—dawn and dusk—oscillators are involved in the Nasonia photoperiodic clock. The results are interpreted in terms of ‘internal coincidence’.N. vitripennis was shown to be able to distinguish between 12 and 18 hr of red light (>600 nm) in the photoperiodic sense. A ‘positive’ resonance experiment using such a red light was also performed. This shows that the spectral sensitivity of the pigment coupling the circadian system to the environmental light cycle extends into the red end of the spectrum.  相似文献   

20.
Some diapause characteristics were studied in a strain of the spider mite. Tetranychus urticae. which had been reared on bean plants in the laboratory for over 15 yr. The diapause induction response curve was of the long-day type, showing a sharply defined critical daylength of 13 hr 50 min. In constant darkness no diapause induction occurred, but with a photoperiod of 1L:23D diapause incidence was already complete. A thermoperiod with a 5°C amplitude induced diapause in combination with a short-day photoperiod only when the low phase of the thermoperiod coincided with the scotophase. The same thermoperiod did not induce any diapause in constant darkness. The photoperiodic reaction of the laboratory strain used in these experiments appeared to remain constant over a very long period of time and to be independent of the diapause history of previous generations of mites.Although photoperiodic sensitivity was demonstrated during the whole postembryonic development, sensitivity was maximal at the end of the protonymphal instar and declined rapidly during the deutonymphal instar. Only 2 inductive cycles of 10L:14D were required to induce up to 62% diapause if the mites were kept in continuous darkness during the remainder of their development. Long days or continuous light could reverse the inductive effect of a sequence of short-day cycles previously applied to the mites.Light breaks of 1 hr duration applied at different times during the dark period of a 10L:14D photoperiod generated a sharp bimodal response curve with two discrete points of sensitivity to the light breaks at 10 hr after ‘dusk’ and 10 hr before ‘dawn’, thus showing a remarkable similarity with the results obtained in light break experiments with some species of insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号