首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Aneuploidy leads to severe developmental defects in mammals and is also a hallmark of cancer. However, whether aneuploidy is a driving cause or a consequence of tumor formation remains controversial. Paradoxically, existing studies based on aneuploid yeast and mouse fibroblasts have shown that aneuploidy is usually detrimental to cellular fitness. Here, we examined the effects of aneuploidy on mouse embryonic stem (ES) cells by generating a series of cell lines that each carries an extra copy of single chromosomes, including trisomy 6, 8, 11, 12, or 15. Most of these aneuploid cell lines had rapid proliferation rates and enhanced colony formation efficiencies. They were less dependent on growth factors for self‐renewal and showed a reduced capacity to differentiate in vitro. Moreover, trisomic stem cells formed teratomas more efficiently, from which undifferentiated cells can be recovered. Further investigations demonstrated that co‐culture of wild‐type and aneuploid ES cells or supplementation with extracellular BMP4 rescues the differentiation defects of aneuploid ES cells.  相似文献   

4.
5.
6.
The molecular basis of pluripotency in mouse embryonic stem cells   总被引:6,自引:0,他引:6  
  相似文献   

7.
Examination of the growth requirements of murine embryonal carcinoma cells (EC cells) or embryonic stem cells (ES cells) in serum-free medium revealed that PCC3 EC cells required activin A to grow and/or survive in such medium. In the absence of activin A, PCC3 cells began to disintegrate within 3 days under any serum-free conditions examined. P19 and AT805 EC cells grew even in serum-free medium without activin A but their growth rates were slightly facilitated by its addition. F9 EC cells also grew in the medium without activin A and its addition somewhat inhibited their growth rate. Three independently isolated ES cell lines and feeder-dependent PSA-1 EC cells also grew in serum-free medium without activin A if leukemia inhibitory factor (LIF) was supplemented. The addition of activin A had little effect on their growth rates. These findings suggest that PCC3 EC cells are a sort of nutritional mutant requiring activin A, thus making them useful in stidies on the growth regulatory mechanisms of EC/ES cells and/or the action of activin on EC/ES cells.  相似文献   

8.
wnt3a but not wnt11 supports self-renewal of embryonic stem cells   总被引:5,自引:0,他引:5  
wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not. Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state.  相似文献   

9.
10.
Mouse embryonic stem (ES) cells can proliferate indefinitely in an undifferentiated state in the presence of leukemia inhibitory factor (LIF), or differentiate into all three germ layers upon removal of this factor. To determine cellular factors associated with self-renewal of undifferentiated ES cells, we used polymerase chain reaction-assisted cDNA subtraction to screen genes that are expressed in undifferentiated ES cells and down-regulated after incubating these cells in a differentiation medium without LIF for 48 h. The mRNA expression of a tetraspanin transmembrane protein, CD9, was high in undifferentiated ES cells and decreased shortly after cell differentiation. An immunohistochemical analysis confirmed that plasma membrane-associated CD9 was expressed in undifferentiated ES cells but low in the differentiated cells. Addition of LIF to differentiating ES cells reinduced mRNA expression of CD9, and CD9 expression was accompanied with a reappearance of undifferentiated ES cells. Furthermore, activation of STAT3 induced the expression of CD9, indicating the LIF/STAT3 pathway is critical for maintaining CD9 expression. Finally, addition of anti-CD9 antibody blocked ES cell colony formation and reduced cell viability. These results indicate that CD9 may play a role in LIF-mediated maintenance of undifferentiated ES cells.  相似文献   

11.
PI3K signaling pathway plays a significant role in embryonic stem cells (ES cells) self‐renewal. Overexpression of Nanog maintains mouse ES cells pluripotency independent of leukemia inhibitory factor (LIF). However, little is known about the effect of PI3K signaling pathway on ES cells with Nanog overexpression. Our experiments aimed to explore the relationship between PI3K signaling pathway and Nanog expression in ES cells. We observed the effect of LY294002, a specific inhibitor of PI3K pathway, on wild‐type J1 cells and Nanog overexpressing (Ex‐Nanog) J1 cells in the presence or absence of LIF. With LY294002 treatment, both of them lost their ES features even in the presence of LIF. But the differentiation induced by LY294002 on Ex‐Nanog J1 cells was slighter lower than that on wild‐type J1 cells. These results indicate that inhibition of PI3K pathway induces mouse ES cells differentiation. Exogenous Nanog sustains mouse ES cells pluripotency independent of LIF, and alleviates the differentiation induced by LY294002. But it is insufficient to totally reverse the differentiation. J. Cell. Biochem. 106: 1041–1047, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Embryonic stem (ES) cells rely on growth factors provided by feeder cells or exogenously to maintain their pluripotency. In order to identify such factors, we have established sub-lines of STO feeder cells which exhibit variable ability in supporting ES cell self-renewal. Functional screening identifies WNT5A and WNT6 as STO cell-produced factors that potently inhibit ES cell differentiation in a serum-dependent manner. Furthermore, direct activation of beta-catenin without disturbing the upstream components of the WNT/beta-catenin pathway fully recapitulates the effect of WNTs on ES cells. Importantly, the WNT/beta-catenin pathway up-regulates the mRNA for Stat3, a known regulator of ES cell self-renewal in the mouse. Finally, LIF is able to mimic the serum effect to act synergistically with WNT proteins to inhibit ES cell differentiation. Therefore, our study reveals part of the molecular mechanisms by which the WNT/beta-catenin pathway acts to prevent ES cell differentiation through convergence on the LIF/JAK-STAT pathway at the level of STAT3.  相似文献   

13.
T Matsuda  T Nakamura  K Nakao  T Arai  M Katsuki  T Heike    T Yokota 《The EMBO journal》1999,18(15):4261-4269
Embryonic stem (ES) cells can be maintained in an undifferentiated state in the presence of leukemia inhibitory factor (LIF). LIF acts through a receptor complex composed of a low affinity LIF receptor (LIFRbeta) and gp130. We reported that the intracellular domain of gp130 plays an important role in self-renewal of ES cells. In the present study, we examined the signaling pathway through which gp130 contributes to the self-renewal of ES cells. Mutational analysis of the cytoplasmic domain of gp130 revealed that the tyrosine residue of gp130 responsible for STAT3 activation is necessary for self-renewal of ES cells, while that required for SHP2 and MAP kinase activation was dispensable. Next, we constructed a fusion protein composed of the entire coding region of STAT3 and the ligand binding domain of the estrogen receptor. This construction (STAT3ER) induced expression of junB (one of the targets of STAT3) in ES cells in the presence of the synthetic ligand 4-hydroxytamoxifen (4HT), thereby indicating that STAT3ER is a conditionally active form. ES cells transfected with STAT3ER cultured in the presence of 4HT maintained an undifferentiated state. Taken together, these results strongly suggest that STAT3 activation is required and sufficient to maintain the undifferentiated state of ES cells.  相似文献   

14.
Recently, we proposed that rabbit embryonic stem (ES) cells can be stable mammalian ES cells and can be a small animal model for human ES cell research. However, the signaling pathways controlling rabbit ES cell pluripotency remain largely unknown. Here we report that bFGF can maintain the undifferentiated status of rabbit ES cells and found that Activin/Nodal signaling through Smad2/3 activation is necessary to maintain the pluripotent status of rabbit ES cells. We further show that in spite of STAT3 in rabbit ES cells, LIF is dispensable for maintenance of undifferentiated status in rabbit ES cells. Although phosphorylation of Janus Kinase signal transducer and activator (JAK/STAT) disappeared after JAK-inhibitor treatment, OCT4 is constantly produced. When rabbit ES cells were cultured for more than 40 passages in the absence of LIF, expression of stem cell markers and teratoma formation were observed. Additionally, treatment with Rho-associated kinase (ROCK) inhibitor, Y27632, to rabbit ES cells significantly enhanced cell growth. These findings suggest that molecular mechanisms underlying rabbit ES cell self-renewal and pluripotency are similar to primate ES cells. Rabbit ES cells may provide a translational research model for the study of human diseases in vitro and applications to transplantation therapy.  相似文献   

15.
Mouse embryonic stem (ES) cells can be maintained in an undifferentiated state in the presence of leukemia inhibitory factor (LIF), a member of the interleukin-6 cytokine family. In other mammals, this is not possible with LIF alone. Chicken ES-like cells (blastodermal cells) have only been cultured with mouse LIF because chicken LIF was not available. However the culture system is imperfect and chicken ES-like cells equivalent to mouse ES cells were not observed. In the present study, we cloned the cDNA-encoding chicken LIF using mRNA subtraction and RACE methodology. The chicken LIF cDNA encodes a protein with approximately 40% sequence identity to mouse LIF. It has 211 amino acids including a putative N-terminal signal peptide of 24 residues. Chicken blastodermal cells were cultured in the presence of bacterially expressed chicken LIF or mouse LIF. The expression of alkaline phosphatase and embryonal carcinoma cell monoclonal antibody-1 and stage-specific embryonic antigen-1 and the activation of STAT3 were examined, all of which are indices of the undifferentiated state. Exposure in the blastodermal cells to recombinant chicken LIF but not to mouse LIF maintained the expression of these various markers. After 9 days of incubation, the blastodermal cells formed cystic embryoid bodies in the presence of mouse LIF but not in the presence of recombinant chicken LIF. We conclude that chicken LIF is able to maintain chicken ES cell cultures in the undifferentiated state.  相似文献   

16.
Leukaemia inhibitory factor (LIF) was the first soluble factor identified as having potential to maintain the pluripotency of mouse embryonic stem (ES) cells. Recently, a second factor, Wnt, with similar activity was found. However, the relationship between these completely different signals mediating the overlapping functions is still unclear. Here, we report that the conditioned medium of L cells expressing Wnt3a maintains ES cells in the undifferentiated state in feeder-free culture, followed by expression of stem cell markers and their ability to generate germline chimaeras. However, although the activity of this conditioned medium is dependent on Wnt3a, recombinant Wnt3a protein cannot maintain ES cells in the undifferentiated state. As supplementation with Wnt3a to the sub-threshold level of LIF alone was not sufficient to maintain ES self-renewal, the results of maintenance of the undifferentiated state indicated the synergistic action of Wnt and LIF. Induction of constitutively activated beta-catenin alone is unable to maintain ES self-renewal but shows a synergistic effect with LIF. These observations indicate that the Wnt signal mediated by the canonical pathway is not sufficient but enhances the effect of LIF to maintain self-renewal of mouse ES cells.  相似文献   

17.
Eleven early embryonic stem (EES) cell lines were established using a new novel method. Two cell stage embryos from the ddY mouse strain were cultured in alpha-MEM supplemented with 10% fetal calf serum (FCS) and embryotrophic factors (ETFs) and allowed to develop to the trilaminal germ disc embryonic stage. Only small round cells (EES cells) were isolated by the colony isolating technique and subsequently cultured in the same medium containing the ETFs and leukemia inhibitory factors (LIF-10 ng/ml). The newly established embryonic stem (ES) cells isolated from inner cell mass of blastocysts differentiated from two cell stage embryo in culture. The EES and ES cell lines were maintained in an undifferentiated state using Ham's F12 medium supplemented with 10% FCS and 1 ng/ml of LIF. The EES cells maintained their normal genetic and morphological features as well as their potential to differentiate into a broad spectrum of cell types as well as their ability to contribute to all cell lineages in chimeric mice. Moreover, these cell lines changed and differentiated into various kinds of cells by removing LIF and by the addition of ETFs to the vitro culture system. All 11 EES cell lines and 3 ES cell lines formed embryoid bodies; however, cell line EES-4 formed tube-like structures which extended, anastomosed with each other, and finally formed networks when the LIF were absent. Primitive germ organ-like structures composed of 3 germ layers were recognized in the cultures following the administration of ETFs. In conclusion, the new method devised by us is a novel, easy and reliable technique for establishing EES cell lines.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号