首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

An influenza H3N2 epidemic occurred throughout Southern China in 2012.

Methods

We analyzed the hemagglutinin (HA) and neuraminidase (NA) genes of influenza H3N2 strains isolated between 2011–2012 from Guangdong. Mutation sites, evolutionary selection, antigenic sites, and N-glycosylation within these strains were analyzed.

Results

The 2011–2012 Guangdong strains contained the HA-A214S, HA-V239I, HA-N328S, NA-L81P, and NA-D93G mutations, similar to those seen in the A/ Perth/16/2009 influenza strain. The HA-NSS061–063 and NNS160–162 glycosylation sites were prevalent among the 2011–2012 Guangdong strains but the NA-NRS402–404 site was deleted. Antigenically, there was a four-fold difference between A/Perth/16/2009 -like strains and the 2011–2012 Guangdong strains.

Conclusion

Antigenic drift of the H3N2 subtype contributed to the occurrence of the Southern China influenza epidemic of 2012.
  相似文献   

2.

Background

Hepatitis B infection caused by the hepatitis B virus is one of the most serious viral infections and a global health problem. In the transmission of hepatitis B infection, three different phases, i.e. acute infected, chronically infected, and carrier individuals, play important roles. Carrier individuals are especially significant, because they do not exhibit any symptoms and are able to transmit the infection. Here we assessed the transmissibility associated with different infection stages of hepatitis B and generated an epidemic model.

Methods

To demonstrate the transmission dynamic of hepatitis B, we investigate an epidemic model by dividing the infectious class into three subclasses, namely acute infected, chronically infected, and carrier individuals with both horizontal and vertical transmission.

Results

Numerical results and sensitivity analysis of some important parameters are presented to show that the proportion of births without successful vaccination, perinatally infected individuals, and direct contact rate are highest risk factors for the spread of hepatitis B in the community.

Conclusion

Our work provides a coherent platform for studying the full dynamics of hepatitis B and an effective direction for theoretical work.
  相似文献   

3.

Background

Despite high vaccination coverage, many childhood infections pose a growing threat to human populations. Accurate disease forecasting would be of tremendous value to public health. Forecasting disease emergence using early warning signals (EWS) is possible in non-seasonal models of infectious diseases. Here, we assessed whether EWS also anticipate disease emergence in seasonal models.

Methods

We simulated the dynamics of an immunizing infectious pathogen approaching the tipping point to disease endemicity. To explore the effect of seasonality on the reliability of early warning statistics, we varied the amplitude of fluctuations around the average transmission. We proposed and analyzed two new early warning signals based on the wavelet spectrum. We measured the reliability of the early warning signals depending on the strength of their trend preceding the tipping point and then calculated the Area Under the Curve (AUC) statistic.

Results

Early warning signals were reliable when disease transmission was subject to seasonal forcing. Wavelet-based early warning signals were as reliable as other conventional early warning signals. We found that removing seasonal trends, prior to analysis, did not improve early warning statistics uniformly.

Conclusions

Early warning signals anticipate the onset of critical transitions for infectious diseases which are subject to seasonal forcing. Wavelet-based early warning statistics can also be used to forecast infectious disease.
  相似文献   

4.

Introduction

Producing a wide range of volatile secondary metabolites Saccharomyces cerevisiae influences wine, beer, and bread sensory quality and hence selection of strains based on their volatilome becomes pivotal. A rapid on-line method for volatilome assessing of strains growing on standard solid media is still missing.

Objectives

Methodologically, the aim of this study was to demonstrate the automatic, real-time, direct, and non-invasive monitoring of yeast volatilome in order to rapidly produce a robust large data set encompassing measurements relative to many strains, replicates and time points. The fundamental scope was to differentiate volatilomes of genetically similar strains of oenological relevance during the whole growing process.

Method

Six different S. cerevisiae strains (four meiotic segregants of a natural strain and two laboratory strains) inoculated onto a solid medium have been monitored on-line by Proton Transfer Reaction—Time-of-Flight—Mass Spectrometry for 11 days every 4 h (3540 time points). FastGC PTR-ToF-MS was performed during the stationary phase on the 5th day.

Results

More than 300 peaks have been extracted from the average spectra associated to each time point, 70 have been tentatively identified. Univariate and multivariate analyses have been performed on the data matrix (3640 measurements?×?70 peaks) highlighting the volatilome evolution and strain-specific features. Laboratory strains with opposite mating type, and meiotic segregants of the same natural strain showed significantly different profiles.

Conclusions

The described set-up allows the on-line high-throughput screening of yeast volatilome of S. cerevisiae strains and the identification of strain specific features and new metabolic pathways, discriminating also genetically similar strains, thus revealing a novel method for strain phenotyping, identification, and quality control.
  相似文献   

5.

Background

Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover.

Methods

We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models.

Results

We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration.

Conclusions

We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.
  相似文献   

6.

Background

Appropriate definitionof neural network architecture prior to data analysis is crucialfor successful data mining. This can be challenging when the underlyingmodel of the data is unknown. The goal of this study was to determinewhether optimizing neural network architecture using genetic programmingas a machine learning strategy would improve the ability of neural networksto model and detect nonlinear interactions among genes in studiesof common human diseases.

Results

Using simulateddata, we show that a genetic programming optimized neural network approachis able to model gene-gene interactions as well as a traditionalback propagation neural network. Furthermore, the genetic programmingoptimized neural network is better than the traditional back propagationneural network approach in terms of predictive ability and powerto detect gene-gene interactions when non-functional polymorphismsare present.

Conclusion

This study suggeststhat a machine learning strategy for optimizing neural network architecturemay be preferable to traditional trial-and-error approaches forthe identification and characterization of gene-gene interactionsin common, complex human diseases.
  相似文献   

7.

Objective

This study examined the differences of psychological strains between Chinese and American college students and discussed how strains may influence individuals’ suicidal ideation and depression.

Participants/methods

A total of 539 college students (298 from China and 241 from the U.S.) were recruited in March 2016 to complete the survey study. Multiple linear regressions were used in data analysis.

Results

Students in America had higher scores on depression and stress than students in China, while students in China rated higher on suicidal ideation than students in America. In contrast of students in America facing more coping strains, students in China were confronting more value strains in their life.

Conclusion

The cross-cultural variations in the effect of psychological strains have been substantiated in current study, indicating that understanding the psychological strains in different cultural contexts is necessary for the early intervention and prevention in college aged populations.
  相似文献   

8.

Background

Many mathematical models assume random or homogeneous mixing for various infectious diseases. Homogeneous mixing can be generalized to mathematical models with multi-patches or age structure by incorporating contact matrices to capture the dynamics of the heterogeneously mixing populations. Contact or mixing patterns are difficult to measure in many infectious diseases including influenza. Mixing patterns are considered to be one of the critical factors for infectious disease modeling.

Methods

A two-group influenza model is considered to evaluate the impact of heterogeneous mixing on the influenza transmission dynamics. Heterogeneous mixing between two groups with two different activity levels includes proportionate mixing, preferred mixing and like-with-like mixing. Furthermore, the optimal control problem is formulated in this two-group influenza model to identify the group-specific optimal treatment strategies at a minimal cost. We investigate group-specific optimal treatment strategies under various mixing scenarios.

Results

The characteristics of the two-group influenza dynamics have been investigated in terms of the basic reproduction number and the final epidemic size under various mixing scenarios. As the mixing patterns become proportionate mixing, the basic reproduction number becomes smaller; however, the final epidemic size becomes larger. This is due to the fact that the number of infected people increases only slightly in the higher activity level group, while the number of infected people increases more significantly in the lower activity level group. Our results indicate that more intensive treatment of both groups at the early stage is the most effective treatment regardless of the mixing scenario. However, proportionate mixing requires more treated cases for all combinations of different group activity levels and group population sizes.

Conclusions

Mixing patterns can play a critical role in the effectiveness of optimal treatments. As the mixing becomes more like-with-like mixing, treating the higher activity group in the population is almost as effective as treating the entire populations since it reduces the number of disease cases effectively but only requires similar treatments. The gain becomes more pronounced as the basic reproduction number increases. This can be a critical issue which must be considered for future pandemic influenza interventions, especially when there are limited resources available.
  相似文献   

9.

Introduction

It is difficult to elucidate the metabolic and regulatory factors causing lipidome perturbations.

Objectives

This work simplifies this process.

Methods

A method has been developed to query an online holistic lipid metabolic network (of 7923 metabolites) to extract the pathways that connect the input list of lipids.

Results

The output enables pathway visualisation and the querying of other databases to identify potential regulators. When used to a study a plasma lipidome dataset of polycystic ovary syndrome, 14 enzymes were identified, of which 3 are linked to ELAVL1—an mRNA stabiliser.

Conclusion

This method provides a simplified approach to identifying potential regulators causing lipid-profile perturbations.
  相似文献   

10.

Background

Highly successful strategies to make populations more resilient to infectious diseases, such as childhood vaccinations programs, may nonetheless lead to unpredictable outcomes due to the interplay between seasonal variations in transmission and a population’s immune status.

Methods

Motivated by the study of diseases such as pertussis we introduce a seasonally-forced susceptible-infectious-recovered model of disease transmission with waning and boosting of immunity. We study the system’s dynamical properties using a combination of numerical simulations and bifurcation techniques, paying particular attention to the properties of the initial condition space.

Results

We find that highly unpredictable behaviour can be triggered by changes in biologically relevant model parameters such as the duration of immunity. In the particular system we analyse — previously used in the literature to study pertussis dynamics — we identify the presence of an initial-condition landscape containing three coexisting attractors. The system’s response to interventions which perturb population immunity (e.g. vaccination "catch-up" campaigns) is therefore difficult to predict.

Conclusion

Given the increasing use of models to inform policy decisions regarding vaccine introduction and scheduling and infectious diseases intervention policy more generally, our findings highlight the importance of thoroughly investigating the dynamical properties of those models to identify key areas of uncertainty. Our findings suggest that the often stated tension between capturing biological complexity and utilising mathematically simple models is perhaps more nuanced than generally suggested. Simple dynamical models, particularly those which include forcing terms, can give rise to incredibly complex behaviour.
  相似文献   

11.

Background

Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included.

Methods

The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons.

Results

Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula.

Conclusions

The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.
  相似文献   

12.
13.

Objectives

To develop and validate a microdilution method for measuring the minimum inhibitory concentration (MIC) of biosurfactants.

Results

A standardized microdilution method including resazurin dye has been developed for measuring the MIC of biosurfactants and its validity was established through the replication of tetracycline and gentamicin MIC determination with standard bacterial strains.

Conclusion

This new method allows the generation of accurate MIC measurements, whilst overcoming critical issues related to colour and solubility which may interfere with growth measurements for many types of biosurfactant extracts.
  相似文献   

14.

Background

Different from other indicators of cardiac function, such as ejection fraction and transmitral early diastolic velocity, myocardial strain is promising to capture subtle alterations that result from early diseases of the myocardium. In order to extract the left ventricle (LV) myocardial strain and strain rate from cardiac cine-MRI, a modified hierarchical transformation model was proposed.

Methods

A hierarchical transformation model including the global and local LV deformations was employed to analyze the strain and strain rate of the left ventricle by cine-MRI image registration. The endocardial and epicardial contour information was introduced to enhance the registration accuracy by combining the original hierarchical algorithm with an Iterative Closest Points using Invariant Features algorithm. The hierarchical model was validated by a normal volunteer first and then applied to two clinical cases (i.e., the normal volunteer and a diabetic patient) to evaluate their respective function.

Results

Based on the two clinical cases, by comparing the displacement fields of two selected landmarks in the normal volunteer, the proposed method showed a better performance than the original or unmodified model. Meanwhile, the comparison of the radial strain between the volunteer and patient demonstrated their apparent functional difference.

Conclusions

The present method could be used to estimate the LV myocardial strain and strain rate during a cardiac cycle and thus to quantify the analysis of the LV motion function.
  相似文献   

15.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

16.

Background

Despite the progress in neuroblastoma therapies the mortality of high-risk patients is still high (40–50%) and the molecular basis of the disease remains poorly known. Recently, a mathematical model was used to demonstrate that the network regulating stress signaling by the c-Jun N-terminal kinase pathway played a crucial role in survival of patients with neuroblastoma irrespective of their MYCN amplification status. This demonstrates the enormous potential of computational models of biological modules for the discovery of underlying molecular mechanisms of diseases.

Results

Since signaling is known to be highly relevant in cancer, we have used a computational model of the whole cell signaling network to understand the molecular determinants of bad prognostic in neuroblastoma. Our model produced a comprehensive view of the molecular mechanisms of neuroblastoma tumorigenesis and progression.

Conclusion

We have also shown how the activity of signaling circuits can be considered a reliable model-based prognostic biomarker.

Reviewers

This article was reviewed by Tim Beissbarth, Wenzhong Xiao and Joanna Polanska. For the full reviews, please go to the Reviewers’ comments section.
  相似文献   

17.

Objective

To test the inactivation of the antibiotic, virginiamycin, by laccase-induced culture supernatants of Aureobasidium pullulans.

Results

Fourteen strains of A. pullulans from phylogenetic clade 7 were tested for laccase production. Three laccase-producing strains from this group and three previously identified strains from clade 5 were compared for inactivation of virginiamycin. Laccase-induced culture supernatants from clade 7 strains were more effective at inactivation of virginiamycin, particularly at 50 °C. Clade 7 strain NRRL Y-2567 inactivated 6 µg virginiamycin/ml within 24 h. HPLC analyses indicated that virginiamycin was degraded by A. pullulans.

Conclusions

A. pullulans has the potential for the bioremediation of virginiamycin-contaminated materials, such as distiller’s dry grains with solubles (DDGS) animal feed produced from corn-based fuel ethanol production.
  相似文献   

18.

Objective

α-Galactosidases are widely used in many fields. It is necessary to improve the production of enzymes through microbiological processes. The aim of this study was to construct recombinant Aspergillus niger strains with high α-galactosidase production.

Results

Two recombinant A. niger strains were constructed: AB and AGB. The recombinant AB strain contained the α-galactosidase aglB gene from A. niger with its native AglB signal peptide regulated by the glucoamylase promoter. In the AGB recombinant strain, the AglB signal peptide was replaced with the glucoamylase (GlaA) signal peptide. The extracellular maximum α-galactosidase activity of the AGB strain was 215.7 U/ml and that of the AB strain was 9.8 U/mL. The optimal conditions for α-galactosidase were pH 3.5 and 35 °C.

Conclusions

The GlaA signal peptide substantially increased the yield of secreted α-galactosidase in A. niger. This recombinant strain holds great potential for industrial applications.
  相似文献   

19.

Background

Increased computational resources have made individual based models popular for modelling epidemics. They have the advantage of incorporating heterogeneous features, including realistic population structures (like e.g. households). Existing stochastic simulation studies of epidemics, however, have been developed mainly for incorporating single pathogen scenarios although the effect of different pathogens might directly or indirectly (e.g. via contact reductions) effect the spread of each pathogen. The goal of this work was to simulate a stochastic agent based system incorporating the effect of multiple pathogens, accounting for the household based transmission process and the dependency among pathogens.

Methods

With the help of simulations from such a system, we observed the behaviour of the epidemics in different scenarios. The scenarios included different household size distributions, dependency versus independency of pathogens, and also the degree of dependency expressed through household isolation during symptomatic phase of individuals. Generalized additive models were used to model the association between the epidemiological parameters of interest on the variation in the parameter values from the simulation data. All the simulations and statistical analyses were performed using R 3.4.0.

Results

We demonstrated the importance of considering pathogen dependency using two pathogens, and showing the difference when considered independent versus dependent. Additionally for the general scenario with more pathogens, the assumption of dependency among pathogens and the household size distribution in the population cohort was found to be effective in containing the epidemic process. Additionally, populations with larger household sizes reached the epidemic peak faster than societies with smaller household sizes but dependencies among pathogens did not affect this outcome significantly. Larger households had more infections in all population cohort examples considered in our simulations. Increase in household isolation coefficient for pathogen dependency also could control the epidemic process.

Conclusion

Presence of multiple pathogens and their interaction can impact the behaviour of an epidemic across cohorts with different household size distributions. Future household cohort studies identifying multiple pathogens will provide useful data to verify the interaction processes in such an infectious disease system.
  相似文献   

20.

Background

This study estimates atrial repolarization activities (Ta waves), which are typically hidden most of the time from body surface electrocardiography when diagnosing cardiovascular diseases. The morphology of Ta waves has been proven to be an important marker for the early sign of inferior injury, such as acute atrial infarction, or arrhythmia, such as atrial fibrillation. However, Ta waves are usually unseen except during conduction system malfunction, such as long QT interval or atrioventricular block. Therefore, justifying heart diseases based on atrial repolarization becomes impossible in sinus rhythm.

Methods

We obtain TMPs in the atrial part of the myocardium which reflects the correct excitation sequence starting from the atrium to the end of the apex.

Results

The resulting TMP shows the hidden atrial part of ECG waves.

Conclusions

This extraction makes many diseases, such as acute atrial infarction or arrhythmia, become easily diagnosed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号