首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Septum formation is a crucial step of cytokinesis in fungi. In the basidiomycete Ustilago maydis, the germinal centre kinase Don3 triggers initiation of a secondary septum necessary for cell separation after cytokinesis. Here we show that oligomerization of Don3 via a putative coiled-coil domain is critical for secondary septum formation. Within the Don3 sequence we detected a characteristic C-terminal sequence motif (T-motif), which determines the subcellular localization of Don3 but is not required for regulation of cell separation. This motif defines a novel family of fungal protein kinases including Sid1p, an essential component of the septation initiation network (SIN) in Schizosaccharomyces pombe. Using the yeast two-hybrid system we isolated the Don3-interacting protein Dip1, which is similar to S. pombe Cdc14p, another member of the SIN. Remarkably, deletion of dip1 did not interfere with cytokinesis in U. maydis, but both dip1 and don3 mutants were affected in nuclear envelope breakdown (NEBD) during mitosis. This phenotype has already been described for mutants, which lack the small GTPase Ras3, the U. maydis homologue of the SIN component Spg1p. We propose that the Don3 kinase exerts a dual function in the regulation of cell separation and NEBD.  相似文献   

2.
Unconventional secretion has emerged as an increasingly important cellular process in eukaryotic cells. The underlying translocation mechanisms are diverse and often little understood. We study unconventional secretion of chitinase Cts1 in the corn smut fungus Ustilago maydis. This protein participates in the cytokinesis of yeast cells. During budding it localizes to the septated fragmentation zone where it presumably functions in the degradation of remnant chitin to allow separation of mother and daughter cell. However, the mechanistic details of Cts1 export remain unclear.Here we investigated the mechanism of unconventional Cts1 secretion with a focus on cytokinesis. Cell-cycle inhibition experiments supported the hypothesis that Cts1 export is connected to cytokinesis. To substantiate this finding we analysed gene deletion mutants impaired in cell separation and discovered that strains defective in secondary septum formation were affected in Cts1 export. The germinal centre kinase Don3 had a particularly strong influence on unconventional secretion. Using a synthetic switch, we unambiguously verified an essential role of Don3 for cytokinesis-dependent Cts1 export via the fragmentation zone. Thus, we gained novel insights into the mechanism of unconventional secretion and discovered the first regulatory component of this process.  相似文献   

3.
Dimorphic switching from budding to filamentous growth is a characteristic feature of many pathogenic fungi. In the fungal model organism Ustilago maydis polarized growth is induced by the multiallelic b mating type locus and requires the Rho family GTPase Rac1. Here we show that mating type-induced polarized growth involves negative feedback regulation of the Rac1-specific guanine nucleotide exchange factor (GEF) Cdc24. Although Cdc24 is essential for polarized growth, its concentration is drastically diminished during filament formation. Cdc24 is part of a protein complex that also contains the scaffold protein Bem1 and the PAK kinase Cla4. Activation of Rac1 results in Cla4-dependent degradation of the Rac1-GEF Cdc24, thus creating a regulatory negative feedback loop. We generated mutants of Cdc24 that are resistant to Cla4-dependent destruction. Expression of stable Cdc24 variants interfered with filament formation, indicating that negative feedback regulation of Cdc24 is critical for the establishment of polarized growth.  相似文献   

4.
5.
Motivated by both analytical tractability and empirical practicality, community ecologists have long treated the species pair as the fundamental unit of study. This notwithstanding, the challenge of understanding more complex systems has repeatedly generated interest in the role of so‐called higher‐order interactions (HOIs) imposed by species beyond the focal pair. Here we argue that HOIs – defined as non‐additive effects of density on per capita growth – are best interpreted as emergent properties of phenomenological models (e.g. Lotka–Volterra competition) rather than as distinct ‘ecological processes’ in their own right. Using simulations of consumer‐resource models, we explore the mechanisms and system properties that give rise to HOIs in observational data. We demonstrate that HOIs emerge under all but the most restrictive of assumptions, and that incorporating non‐additivity into phenomenological models improves the quantitative and qualitative accuracy of model predictions. Notably, we also observe that HOIs derive primarily from mechanisms and system properties that apply equally to single‐species or pairwise systems as they do to more diverse communities. Consequently, there exists a strong mandate for further recognition of non‐additive effects in both theoretical and empirical research.  相似文献   

6.
7.
Ustilago maydis is a haploid basidiomycete with single genes for two distinct histone H3 variants. The solitary U1 gene codes for H3.1, predicted to be a replication-independent replacement histone. The U2 gene is paired with histone H4 and produces a putative replication-coupled H3.2 variant. These predictions were evaluated experimentally. U2 was confirmed to be highly expressed in the S phase and had reduced expression in hydroxyurea, and H3.2 protein was not incorporated into transcribed chromatin of stationary phase cells. Constitutive expression of U1 during growth produced ~25% of H3 as H3.1 protein, more highly acetylated than H3.2. The level of H3.1 increased when cell proliferation slowed, a hallmark of replacement histones. Half of new H3.1 incorporated into highly acetylated chromatin was lost with a half-life of 2.5 h, the fastest rate of replacement H3 turnover reported to date. This response reflects the characteristic incorporation of replacement H3 into transcribed chromatin, subject to continued nucleosome displacement and a loss of H3 as in animals and plants. Although the two H3 variants are functionally distinct, neither appears to be essential for vegetative growth. KO gene disruption transformants of the U1 and U2 loci produced viable cell lines. The structural and functional similarities of the Ustilago replication-coupled and replication-independent H3 variants with those in animals, in plants, and in ciliates are remarkable because these distinct histone H3 pairs of variants arose independently in each of these clades and in basidiomycetes.  相似文献   

8.
The ethmoidal region is the most rostral part of the mammalian cranium and provides the surface for the olfactory epithelium. It is part of the respiratory tract and comprises certain mechanic and mechanosensoric functions depending on the species’ mode of foraging. It is one of the least studied aspects of cranial anatomy. A complete and precise characterization of the previously undescribed fetal nasal regions of the aardvark (Orycteropus afer, Tubulidentata), the African elephant (Loxodonta africana, Proboscidea) and the rock hyrax (Procavia capensis, Hyracoidea) is given. The morphology of the ethmoidal region in O. afer and L. africana, highly macrosmatic mammals, is complicated and in many aspects derived, whereas the nasal structures in P. capensis are fairly simple. In order to contribute to current debates on higher‐order eutherian systematics 24 skeletal and soft‐tissue characters in 26 mammalian taxa (25 eutherian taxa and 1 marsupial as outgroup) were evaluated and optimized onto recent eutherian phylogenies (one morphology and one molecular based phylogeny, respectively). It is shown that the ethmoidal region is highly variable within eutherians and its structural elements display a strong tendency towards homoplasy. Therefore, this cranial region is not suitable for use in mammalian superordinal systematics except as support for monophyletic Tethytheria.  相似文献   

9.
In the plant, filamentous growth is required for pathogenicity of the corn smut pathogen Ustilago maydis. Earlier, we identified a role for the cAMP signal transduction pathway in the switch between budding and filamentous growth for this fungus. A gene designated ubc1 (for Ustilago bypass of cyclase) was found to be required for filamentous growth and to encode the regulatory subunit of a cAMP-dependent protein kinase (PKA). Here, we show that ubc1 is important for the virulence of the pathogen. Specifically, ubc1 mutants are able to colonize maize plants and, like the wild-type pathogen, cause localized symptoms in association with the presence of hyphae. However, in contrast to plants infected with wild-type cells that often developed galls from initially chlorotic tissue, plants infected with the ubc1 mutant did not produce galls. These data suggest that PKA regulation is critical for the transition from saprophytic to pathogenic growth and from vegetative to reproductive development. Plate mating assays in which exogenous cAMP was applied suggested that the cAMP and b mating-type morphogenetic pathways may be coordinated.  相似文献   

10.
Ustilago maydis, the causal agent of corn smut disease, displays dimorphic growth in which it alternates between a budding haploid saprophyte and a filamentous dikaryotic pathogen. We are interested in identifying the genetic determinants of filamentous growth and pathogenicity in U. maydis. To do this, we have taken a forward genetic approach. Previously, we showed that haploid adenylate cyclase (uac1) mutants display a constitutively filamentous phenotype. Mutagenesis of a uac1 disruption strain allowed the isolation of a large number of budding suppressor mutants. These mutants are named ubc, for Ustilago bypass of cyclase, as they no longer require the production of cAMP to grow in the budding morphology. Complementation of one of these suppressor mutants led to the identification of ubc3, which is required for filamentous growth and encodes a MAP kinase most similar to those of the yeast pheromone response pathway. In addition to filamentous growth, the ubc3 gene is required for pheromone response and for full virulence. Mutations in the earlier identified fuz7 MAP kinase kinase also suppress the filamentous phenotype of the uac1 disruption mutant, adding evidence that both ubc3 and fuz7 are members of this same MAP kinase cascade. These results support an important interplay of the cAMP and MAP kinase signal transduction pathways in the control of morphogenesis and pathogenicity in U. maydis.  相似文献   

11.
12.
The highly conserved GTP-binding proteins Cdc42 and Rac1 regulate cytokinesis, establishment of cell polarity and vesicular trafficking. In the dimorphic fungus Ustilago maydis , Rac1 is required for cell polarity and budding, while Cdc42 is essential for cell separation during cytokinesis. The same cell separation defect is also observed in mutants that lack Don1, a guanine nucleotide exchange factor (GEF) of the Dbl family. We have generated a series of chimeric GTP-binding proteins consisting of different portions of Cdc42 and Rac1. In vivo complementation analysis revealed that a short region encompassing amino acids 41–56 determines signalling specificity. Remarkably, substitution of a single amino acid at position 56 within this specificity domain is sufficient to confer Cdc42 function to Rac1 in vivo . Expression of Rac1W56F in Δ cdc42 mutant cells resulted in complementation of the cell separation defect. In vitro GDP/GTP exchange assays demonstrated that the Dbl family GEF Don1 is highly specific for Cdc42 and cannot activate Rac1. However, if Rac1W56F is used as a substrate, Don1 is able to stimulate GDP/GTP exchange. Together these data indicate that activation by the GEF Don1 is an important determinant of Cdc42-specific signalling in vivo .  相似文献   

13.
Homologous recombination and repair factors are known to promote both telomere replication and recombination‐based telomere extension. Herein, we address the diverse contributions of several recombination/repair proteins to telomere maintenance in Ustilago maydis, a fungus that bears strong resemblance to mammals with respect to telomere regulation and recombination mechanisms. In telomerase‐positive U. maydis, deletion of rad51 and blm separately caused shortened but stably maintained telomeres, whereas deletion of both engendered similar telomere loss, suggesting that the repair proteins help to resolve similar problems in telomere replication. In telomerase‐negative cells, the loss of Rad51 or Brh2 caused accelerated senescence and failure to generate survivors on semi‐solid medium. However, slow growing survivors can be isolated through continuous liquid culturing, and these survivors exhibit type II‐like as well as ALT‐like telomere features. In contrast, the trt1Δ blmΔ double mutant gives rise to survivors as readily as the trt1Δ single mutant, and like the single mutant survivors, exhibit almost exclusively type I‐like telomere features. In addition, we observed direct physical interactions between Blm and two telomere‐binding proteins, which may thus recruit or regulate Blm at telomeres. Our findings provide the basis for further analyzing the interplays between telomerase, telomere replication, and telomere recombination.  相似文献   

14.
15.
16.
It has been postulated that the fungus Ustilago maydis followed its host maize around the world. In order to understand the biogeography of this fungus relative to its host, we used a bioinformatics approach to develop 86 tandem repeat markers useful for population studies of U. maydis. We characterized repeat motifs between two and 155 nucleotides using 36 isolates from USA, Mexico and South America. Our data suggested that (i) repeat motif length does not predict the number of alleles for that locus, and (ii) that the more polymorphic markers can resolve differences in a small geographical area.  相似文献   

17.
The reproduction organs of maize are those most often attacked by Ustilago maydis. In the male organs it produces a decline in free radicals concentration and, conversely, a rise of concentration in the female organs (in ears). The smut proper, grown on the flower, exhibits an essentially higher free radicals concentration than the smut grown out on the ear of that plant. A smut mixture from flower and ear has only a slightly higher free radicals concentration than the separate ear smut, but an essentially lower one than the smut of the flower.  相似文献   

18.
The kinetics of the uptake and efflux of 3-O-methyl-glucose in sporidia of Ustilago maydis were measured, both in active cells and in cells whose metabolic activity had been inhibited by azide and iodoacetate. The de-energized transport system proved to be carrier mediated with apparent affinity constants 13 +/- 2 mM outside (Ko) and 18 +/- 2 mM inside (K1). The apparent maximum rate constants for the same system were 0.66 +/- 0.05 mmol/1 cell water per min for uptake (V+) and 0.53 +/- 0.04 mmol/l cell water per min for efflux (V-). For the active system K0 = 0.08 +/- 0.01, K1 greater than 40, V+ = 9.7 +/- 0.5 and V- = 1.1 +/- 0.9 (in equivalent units). These results are discussed in the context of the carrier mechanism as proposed by Regen and Morgan (Regen, D.M. and Morgan, H.E. (1964) Biochim. Biophys. Acta 79, 151--166). The antifungal compound carboxin had no effect on de-energized transport but was shown to decrease both K0 And V+ in the active system. Phloretin and phlorizin were also found to be without effect on de-energized cells but the former enhanced while the latter inhibited active uptake.  相似文献   

19.
Rho GTPases, activated by Rho guanine nucleotide exchange factors (GEFs), are conserved molecular switches for signal transductions that regulate diverse cellular processes, including cell polarization and cytokinesis. The fission yeast Schizosaccharomyces pombe has six Rho GTPases (Cdc42 and Rho1–Rho5) and seven Rho GEFs (Scd1, Rgf1–Rgf3, and Gef1–Gef3). The GEFs for Rho2–Rho5 have not been unequivocally assigned. In particular, Gef3, the smallest Rho GEF, was barely studied. Here we show that Gef3 colocalizes with septins at the cell equator. Gef3 physically interacts with septins and anillin Mid2 and depends on them to localize. Gef3 coprecipitates with GDP-bound Rho4 in vitro and accelerates nucleotide exchange of Rho4, suggesting that Gef3 is a GEF for Rho4. Consistently, Gef3 and Rho4 are in the same genetic pathways to regulate septum formation and/or cell separation. In gef3∆ cells, the localizations of two potential Rho4 effectors—glucanases Eng1 and Agn1—are abnormal, and active Rho4 level is reduced, indicating that Gef3 is involved in Rho4 activation in vivo. Moreover, overexpression of active Rho4 or Eng1 rescues the septation defects of mutants containing gef3∆. Together our data support that Gef3 interacts with the septin complex and activates Rho4 GTPase as a Rho GEF for septation in fission yeast.  相似文献   

20.
The septins constitute a family of filament-forming proteins ubiquitous in eukaryotic species. We demonstrate here that the Saccharomyces cerevisiae septin, Cdc3, is a substrate of the cell cycle regulatory cyclin-dependent kinase (Cdk), Cdc28. Two serines near the C-terminus of Cdc3 are phosphorylated in a Cdc28-dependent manner. Analysis of a mutant allele that cannot be phosphorylated at these sites revealed an effect of Cdc28 phosphorylation of Cdc3 at the time of budding. Immunofluorescence analysis of wild-type and mutant Cdc3 indicated that prevention of phosphorylation at Cdc28-dependent sites impairs the disassembly of the old septin ring, which is inherited at mitosis but which usually disappears immediately prior to assembly of a new ring. Furthermore, immuno-fluorescence analysis of septin ring dynamics in a G1 cyclin (Cln) mutant suggests that G1 cyclin function is required for efficient ring disassembly. Thus, phosphorylation of Cdc3 by the Cdc28 kinase at the end of G1 may facilitate initiation of a new cell cycle by promoting disassembly of the obsolete septin ring from the previous cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号