首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In T-cell acute lymphoblastic leukemia (T-ALL) NOTCH 1 receptors are frequently mutated. This leads to aberrantly high Notch signaling, but how this translates into deregulated cell cycle control and the transformed cell type is poorly understood. In this report, we analyze downstream responses resulting from the high level of NOTCH 1 signaling in T-ALL. Notch activity, measured immediately downstream of the NOTCH 1 receptor, is high, but expression of the canonical downstream Notch response genes HES 1 and HEY 2 is low both in primary cells from T-ALL patients and in T-ALL cell lines. This suggests that other immediate Notch downstream genes are activated, and we found that Notch signaling controls the levels of expression of the E3 ubiquitin ligase SKP2 and its target protein p27Kip1. We show that in T-ALL cell lines, recruitment of NOTCH 1 intracellular domain (ICD) to the SKP2 promoter was accompanied by high SKP2 and low p27Kip1 protein levels. In contrast, pharmacologically blocking Notch signaling reversed this situation and led to loss of NOTCH 1 ICD occupancy of the SKP2 promoter, decreased SKP2 and increased p27Kip1 expression. T-ALL cells show a rapid G1-S cell cycle transition, while blocked Notch signaling resulted in G0/G1 cell cycle arrest, also observed by transfection of p27Kip1 or, to a smaller extent, a dominant negative SKP2 allele. Collectively, our data suggest that the aberrantly high Notch signaling in T-ALL maintains SKP2 at a high level and reduces p27Kip1, leading to more rapid cell cycle progression.  相似文献   

2.
3.
The transmembrane receptor Notch1 is a member of the evolutionarily conserved family of developmental regulators originally identified in Drosophila melanogaster. Notch signaling plays essential roles in regulating cell fate in thymic, intestinal, vascular and neuronal development (1-5). Recent studies detect mutations in the Notch1 receptor in roughly half of patients with T cell acute lymphoblastic leukemia (T-ALL) (6). Although expression of an activated Notch1 allele has been shown to cause leukemia in mice, the molecular mechanisms whereby Notch1 mediates cellular transformation are unknown (7). To understand how Notch1 contributes to T cell leukemogenesis, we generated mouse leukemic cell lines where the expression of activated Notch1 was doxycycline-regulated. This cell line was used for gene expression profiling to specifically identify Notch1-regulated genes in leukemia. These studies revealed that Notch1 directly induces the expression of c-myc and that inhibition of Notch1 results in cell cycle arrest and apoptosis and decreased c-myc levels (8). These studies and those performed by Aster, Pear and colleagues in human T-ALL cell lines demonstrate that the direct Notch1-mediated activation of c-myc is required to maintain leukemic growth (8-10). Interestingly, the Notch1/c-Myc oncogenic pathway does not appear limited to T-ALL, as studies by the Efstratiadis group show that expression of intracellular Notch1 leads to mammary tumorigenesis and importantly, transformation appears at least partially c-myc dependent (11). Collectively, these studies begin to delineate how Notch1 mediates cellular transformation and raises the possibility that the Notch1/c-Myc pathway may contribute to human breast cancer and potentially other solid tumors.  相似文献   

4.

Background

The functional interchangeability of mammalian Notch receptors (Notch1-4) in normal and pathophysiologic contexts such as cancer is unsettled. We used complementary in vivo, cell-based and structural analyses to compare the abilities of activated Notch1-4 to support T cell development, induce T cell acute lymphoblastic leukemia/lymphoma (T-ALL), and maintain T-ALL cell growth and survival.

Principal Findings

We find that the activated intracellular domains of Notch1-4 (ICN1-4) all support T cell development in mice and thymic organ culture. However, unlike ICN1-3, ICN4 fails to induce T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and is unable to rescue the growth of Notch1-dependent T-ALL cell lines. The ICN4 phenotype is mimicked by weak gain-of-function forms of Notch1, suggesting that it stems from a failure to transactivate one or more critical target genes above a necessary threshold. Experiments with chimeric receptors demonstrate that the Notch ankyrin repeat domains differ in their leukemogenic potential, and that this difference correlates with activation of Myc, a direct Notch target that has an important role in Notch-associated T-ALL.

Conclusions/Significance

We conclude that the leukemogenic potentials of Notch receptors vary, and that this functional difference stems in part from divergence among the highly conserved ankyrin repeats, which influence the transactivation of specific target genes involved in leukemogenesis.  相似文献   

5.
T cell lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer frequent within pediatric ALL patients. Recent findings suggested that the transmembrane receptor NOTCH1 is the major oncogene for the majority of T-ALL cases. In these cases activating mutations of NOTCH1 are responsible for the transformation of developing T cell progenitors. These observations prompted us to study the mechanisms of Notch1-induced T cell transformation. Using parallel studies in T cell progenitors and established T-ALL lines we have demonstrated that the NF-kB signaling pathway is targeted and induced by Notch1 activation. Our studies suggested that the NF-kB activation by Notch1 can be direct, as Notch1 can bind and activate the promoters of the RELB and NFKB2 factors and indirect, as Notch1 can form a complex with the NF-kB kinase IKK. NF-kB appears to be important for the development of the disease as suppression of the pathway antagonizes T cell transformation both in vitro and in vivo, using animal models of T-ALL. We believe that these findings could be important for the understanding of Notch1 signaling and the therapeutic treatment of T-ALL.  相似文献   

6.
7.
The Notch1 receptor plays a critical role in cell fate decisions during development. Activation of Notch signaling has been implicated in several types of cancer, particularly T-cell acute lymphoblastic leukemia (T-ALL). Consequently, several transgenic mouse strains have been made to study the role of Notch1 in T-ALL. However, the existing Notch1 transgenic lines mimic a translocation event found in only ~1% of T-ALL cases. Here we describe three novel NOTCH1 transgenic mouse strains that have Cre-inducible expression of the entire human NOTCH1 locus, each possessing a common mutation found in T-ALL. Unlike existing Notch1 transgenic strains, these NOTCH1 transgenic strains express full-length receptors from an endogenous human promoter that should be susceptible to a number of Notch antagonists that have recently been developed. These strains will allow researchers to modulate Notch signaling to study both normal development and cancer biology.  相似文献   

8.
9.
10.
Notch signaling is essential for the development of T cell progenitors through the interaction of NOTCH1 receptor on their surface with the ligand, Delta-like 4 (DLL4), which is expressed by the thymic epithelial cells. Notch signaling is quickly shut down once the cells pass β-selection, and CD4/CD8 double positive (DP) cells are unresponsive to Notch. Over the past two decades a number of papers reported that over-activation of Notch signaling causes T cell acute lymphoblastic leukemia (T-ALL), a cancer that prominently features circulating monoclonal CD4/CD8 double positive T cells in different mouse models. However, the possible outcomes of Notch over-activation at different stages of T cell development are unknown, and the fine timing of Notch signaling that results in T-ALL is poorly understood. Here we report, by using a murine model that ectopically expresses DLL4 on developing T cells, that the T-ALL onset is highly dependent on a sustained Notch activity throughout the DP stage, which induces additional mutations to further boost the signaling. In contrast, a shorter period of Notch activation that terminates at the DP stage causes a polyclonal, non-transmissible lymphoproliferative disorder that is also lethal. These observations resolved the discrepancy of previous papers on DLL4 driven hematological diseases in mice, and show the critical importance of the timing and duration of Notch activity.  相似文献   

11.
12.
Ye H  Liu X  Lv M  Wu Y  Kuang S  Gong J  Yuan P  Zhong Z  Li Q  Jia H  Sun J  Chen Z  Guo AY 《Nucleic acids research》2012,40(12):5201-5214
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. The understanding of its gene expression regulation and molecular mechanisms still remains elusive. Started from experimentally verified T-ALL-related miRNAs and genes, we obtained 120 feed-forward loops (FFLs) among T-ALL-related genes, miRNAs and TFs through combining target prediction. Afterwards, a T-ALL miRNA and TF co-regulatory network was constructed, and its significance was tested by statistical methods. Four miRNAs in the miR-17-92 cluster and four important genes (CYLD, HOXA9, BCL2L11 and RUNX1) were found as hubs in the network. Particularly, we found that miR-19 was highly expressed in T-ALL patients and cell lines. Ectopic expression of miR-19 represses CYLD expression, while miR-19 inhibitor treatment induces CYLD protein expression and decreases NF-κB expression in the downstream signaling pathway. Thus, miR-19, CYLD and NF-κB form a regulatory FFL, which provides new clues for sustained activation of NF-κB in T-ALL. Taken together, we provided the first miRNA-TF co-regulatory network in T-ALL and proposed a model to demonstrate the roles of miR-19 and CYLD in the T-cell leukemogenesis. This study may provide potential therapeutic targets for T-ALL and shed light on combining bioinformatics with experiments in the research of complex diseases.  相似文献   

13.
14.
The Notch signaling pathway is activated in the majority of T cell acute lymphoblastic leukemias (T-ALL). Adding to the complexity of Notch signaling in hematopoiesis, recently in Nature, Klinakis et al. (2011) demonstrate a tumor-suppressor function for the Notch pathway in myeloid malignancy.  相似文献   

15.
16.
Oncogenes, which are essential for tumor initiation, development, and maintenance, are valuable targets for cancer therapy. However, it remains a challenge to effectively inhibit oncogene activity by targeting their downstream pathways without causing significant toxicity to normal tissues. Here we show that deletion of mir-181a-1/b-1 expression inhibits the development of Notch1 oncogene-induced T cell acute lymphoblastic leukemia (T-ALL). mir-181a-1/b-1 controls the strength and threshold of Notch activity in tumorigenesis in part by dampening multiple negative feedback regulators downstream of NOTCH and pre-T cell receptor (TCR) signaling pathways. Importantly, although Notch oncogenes utilize normal thymic progenitor cell genetic programs for tumor transformation, comparative analyses of mir-181a-1/b-1 function in normal thymocyte and tumor development demonstrate that mir-181a-1/b-1 can be specifically targeted to inhibit tumor development with little toxicity to normal development. Finally, we demonstrate that mir-181a-1/b-1, but not mir-181a-2b-2 and mir-181-c/d, controls the development of normal thymic T cells and leukemia cells. Together, these results illustrate that NOTCH oncogene activity in tumor development can be selectively inhibited by targeting the molecular networks controlled by mir-181a-1/b-1.  相似文献   

17.
T cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling. In this study we report the presence of loss-of-function mutations and deletions of the EZH2 and SUZ12 genes, which encode crucial components of the Polycomb repressive complex 2 (PRC2), in 25% of T-ALLs. To further study the role of PRC2 in T-ALL, we used NOTCH1-dependent mouse models of the disease, as well as human T-ALL samples, and combined locus-specific and global analysis of NOTCH1-driven epigenetic changes. These studies demonstrated that activation of NOTCH1 specifically induces loss of the repressive mark Lys27 trimethylation of histone 3 (H3K27me3) by antagonizing the activity of PRC2. These studies suggest a tumor suppressor role for PRC2 in human leukemia and suggest a hitherto unrecognized dynamic interplay between oncogenic NOTCH1 and PRC2 function for the regulation of gene expression and cell transformation.  相似文献   

18.
Notch signaling in leukemias and lymphomas   总被引:1,自引:0,他引:1  
Aberrant Notch activation is linked to cancer since 1991 when mammalian Notch1 was first identified as part of the translocation t(7;9) in a subset of human T-cell acute lymphoblastic leukemias (T-ALL). Since then oncogenic Notch signaling has been found in many solid and hematopoietic neoplasms. Depending on tumor type Notch interferes with differentiation, proliferation, survival, cell-cycle progression, angiogenesis, and possibly self-renewal. In hematopoietic neoplasms, recent findings indicate an important role of Notch for T-ALL induction and progression and the pathogenesis of human T- and B-cell-derived lymphomas. Notch signaling has been identified as a potential new therapeutic target in these hematopoietic neoplasms. This review will focus on the most recent findings on Notch signaling in leukemias and lymphomas and its potential role in the maintenance of malignant stem cells.  相似文献   

19.
《Cellular signalling》2014,26(9):2008-2015
Integrin-mediated attachment to extracellular matrix (ECM) is crucial for cancer progression. Malignant T cells such as acute lymphoblastic leukemia (T-ALL) express β1 integrins, which mediate their interactions with ECM. However, the role of these interactions in T-ALL malignancy is still poorly explored. In the present study, we investigated the effect of collagen; an abundant ECM, on T-ALL survival and migration. We found that collagen through α2β1 integrin promotes the survival of T-ALL cell lines in the absence of growth factors. T-ALL cell survival by collagen is associated with reduced caspase activation and maintenance of Mcl-1 levels. Collagen activated both ERK and p38 MAPKs but only MAPK/ERK was required for collagen-induced T-ALL survival. However, we found that α2β1 integrin promoted T-ALL migration via both ERK and p38. Together these data indicate that α2β1 integrin signaling can represent an important signaling pathway in T-ALL pathogenesis and suggest that its blockade could be beneficial in T-ALL treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号