首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

2.
Partial migration, whereby only a fraction of the population migrates, is thought to be the most common type of migration in the animal kingdom, and can have important ecological and evolutionary consequences. Despite this, the factors that influence which individuals migrate and which remain resident are poorly understood. Recent work has shown that consistent individual differences in personality traits in animals can be ecologically important, but field studies integrating personality traits with migratory behaviour are extremely rare. In this study, we investigate the influence of individual boldness, an important personality trait, upon the migratory propensity of roach, a freshwater fish, over two consecutive migration seasons. We assay and individually tag 460 roach and show that boldness influences migratory propensity, with bold individuals being more likely to migrate than shy fish. Our data suggest that an extremely widespread personality trait in animals can have significant ecological consequences via influencing individual-level migratory behaviour.  相似文献   

3.
Theoretically, individuals of migratory species should optimize reproductive investment based on a combination of timing of and body condition at arrival on the breeding grounds. A minimum threshold body mass is required to initiate reproduction, and the timing of reaching this threshold is critical because of the trade‐off between delaying breeding to gain in condition against the declining value of offspring with later reproductive timing. Long‐lived species have the flexibility within their life history to skip reproduction in a given year if they are unable to achieve this theoretical mass threshold. Although the decision to breed or not is an important parameter influencing population dynamics, the mechanisms underlying this decision are poorly understood. Here, we mimicked an unpredictable environmental perturbation that induced a reduction in body mass of Arctic pre‐breeding (before the laying period) female common eiders Somateria mollissima; a long‐lived migratory seaduck, while controlling for individual variation in the pre‐laying physiological reproductive readiness via vitellogenin (VTG) – a yolk‐targeted lipoprotein. Our aim was to causally determine the interaction between body condition and pre‐laying reproductive readiness (VTG) on breeding propensity by experimentally reducing body mass in treatment females. We first demonstrated that arrival body condition was a key driver of breeding propensity. Secondly, we found that treatment and VTG levels interacted to influence breeding propensity, indicating that our experimental manipulation, mimicking an unpredictable food shortage, reduced breeding propensity, regardless of the degree of pre‐laying physiological reproductive readiness (i.e. timing of ovarian follicles recruitment). Our experiment demonstrates that momentary environmental perturbations during the pre‐breeding period can strongly affect the decision to breed, a key parameter driving population dynamics.  相似文献   

4.
Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic tags to record the migration of individual roach (Rutilus rutilus), a partially migratory fish, in the wild following exposure to manipulation of direct (predator presence/absence) and indirect (high/low roach density) perceived predation risk in experimental mesocosms. Following exposure, we released fish in their lake summer habitat and monitored individual migration to connected streams over an entire season. Individuals exposed to increased perceived direct predation risk (i.e. a live predator) showed a higher migratory propensity but no change in migratory timing, while indirect risk (i.e. roach density) affected timing but not propensity showing that elevated risk carried over to alter migratory behaviour in the wild. Our key finding demonstrates predator-driven migratory plasticity, highlighting the powerful role of predation risk for migratory decision-making and dynamics.  相似文献   

5.
气候变化对鸟类迁徙时间的影响是目前生态学研究的热点问题.本文利用鸟类环志的方法分析了2010至2019年河北秦皇岛两种鸟类春季迁徙时间变化趋势及其差异性,并进一步探讨了差异性的原因.选择环志数量较多的食虫鸟黄眉柳莺(Phylloscopus inornatus)和食谷鸟灰头鹀(Emberiza spodocephala...  相似文献   

6.
With rapid global change, organisms in natural systems are exposed to a multitude of stressors that likely co‐occur, with uncertain impacts. We explored individual and cumulative effects of co‐occurring environmental stressors on the striking, yet poorly understood, phenomenon of facultative migration. We reared offspring of a brown trout population that naturally demonstrates facultative anadromy (sea migration), under different environmental stressor treatments and measured life history responses in terms of migratory tactics and freshwater maturation rates. Juvenile fish were exposed to reduced food availability, temperatures elevated to 1.8°C above natural conditions or both treatments in combination over 18 months of experimental tank rearing. When considered in isolation, reduced food had negative effects on the size, mass and condition of fish across the experiment. We detected variable effects of warm temperatures (negative effects on size and mass, but positive effect on lipids). When combined with food restriction, temperature effects on these traits were less pronounced, implying antagonistic stressor effects on morphological traits. Stressors combined additively, but had opposing effects on life history tactics: migration increased and maturation rates decreased under low food conditions, whereas the opposite occurred in the warm temperature treatment. Not all fish had expressed maturation or migration tactics by the end of the study, and the frequency of these ‘unassigned’ fish was higher in food deprivation treatments, but lower in warm treatments. Fish showing migration tactics were smaller and in poorer condition than fish showing maturation tactics, but were similar in size to unassigned fish. We further detected effects of food restriction on hypo‐osmoregulatory function of migrants that may influence the fitness benefits of the migratory tactic at sea. We also highlight that responses to multiple stressors may vary depending on the response considered. Collectively, our results indicate contrasting effects of environmental stressors on life history trajectories in a facultatively migratory species.  相似文献   

7.
Studies of Zugunruhe – the ‘migratory restlessness’ behaviour of captive birds – have been integral to our understanding of animal migration, revealing an inherited propensity to migrate and an endogenous timing and navigation system. However, differences between Zugunruhe in captivity and migration in the wild call for more data, in particular on variation within and among taxa with diverse migration strategies. Here, we characterise Zugunruhe in a long‐term dataset of activity profiles from stonechats (genus Saxicola) with diverse migratory phenotypes (976 migration periods from 414 birds), using a flexible and consistent quantitative approach based on changepoint analysis. For east African, Austrian, Irish, and Siberian stonechats and hybrids, we report key inter‐population differences in the occurrence, timing, and intensity of Zugunruhe. In line with expectations, we found the highest Zugunruhe intensity in the longest‐distance migrants, more variable patterns in short‐distance migrants, and intermediate characteristics of hybrids relative to their parental groups. Inter‐population differences imply high evolutionary lability of Zugunruhe timing within a robustly structured annual cycle. However, counter to theory, Irish partial migrants showed no segregation between migrant and resident individuals, and previously reported nocturnal restlessness was confirmed for resident African stonechats. Further features of nocturnal restlessness that did not align with migratory behaviour of stonechats were juvenile nocturnal restlessness even prior to postjuvenile moult, and protandry in spring, although stonechats winter in heterosexual pairs. Importantly, Zugunruhe of all populations declined with age, and the intensity of an individual bird's Zugunruhe was correlated with activity levels during other parts of the annual cycle. Our results confirm endogenous, population‐specific migration programmes but also reveal apparent discrepancies between Zugunruhe and migration in the wild. We thus highlight both the continued potential of Zugunruhe study and the need for circumspect interpretation when using migratory restlessness to make inferences about migration in the wild.  相似文献   

8.
Brown DR  Sherry TW 《Oecologia》2006,149(1):22-32
The hypothesis that migratory bird populations are limited during the non-breeding season is increasingly supported by empirical studies that also suggest consequences that carry-over into subsequent seasons. Although variation in food supply is the best supported explanation for non-breeding season limitation, the ecological mechanisms and physiological consequences are not well understood. We both supplemented and reduced Ovenbird (Seiurus aurocapilla) food availability on replicate plots in Jamaica in each of 3 years to determine the direct role of food in limiting the physical condition of Ovenbirds. Annual variation in rainfall and food supply created a natural experiment in parallel with manipulations. Sex and age-classes of Ovenbirds did not respond differently in terms of body condition to either food manipulation or natural variation in environmental conditions, suggesting that this population is not structured by strong dominance relationships. Ovenbird body mass, fat, and pectoralis muscle shape were positively and predictably related to manipulated food availability. Feather regrowth rate also responded positively to food supplementation and negatively to food reduction in the drier of 2 years. Prior to manipulation, annual variation in body mass corresponded to annual variation in food supply and rainfall, providing additional, correlational evidence of food limitation. Since multiple intercorrelated body condition indices of Ovenbirds responded directly to food supply, and since food supply influenced body condition independently of other habitat features, we argue that food is a primary driver of non-breeding season population limitation. Moreover, since these effects were observed during the late non-breeding period, when individuals are preparing to migrate, we infer that food availability likely initiates carry-over effects.  相似文献   

9.
Partial migration, in which a fraction of a population migrate and the rest remain resident, occurs in an extensive range of species and can have powerful ecological consequences. The question of what drives differences in individual migratory tendency is a contentious one. It has been shown that the timing of partial migration is based upon a trade-off between seasonal fluctuations in predation risk and growth potential. Phenotypic variation in either individual predation risk or growth potential should thus mediate the strength of the trade-off and ultimately predict patterns of partial migration at the individual level (i.e. which individuals migrate and which remain resident). We provide cross-population empirical support for the importance of one component of this model--individual predation risk--in predicting partial migration in wild populations of bream Abramis brama, a freshwater fish. Smaller, high-risk individuals migrate with a higher probability than larger, low-risk individuals, and we suggest that predation risk maintains size-dependent partial migration in this system.  相似文献   

10.
Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995–2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007–2015) or the annual timing of peak migration (1995–2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade?1). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger‐bodied shorter‐distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.  相似文献   

11.
When migration is a learned behavior, small populations have a significant problem of maintaining migratory knowledge across generations. These populations risk losing migratory behavior entirely, which may exacerbate existing stressors on population size. Here we investigated the success of various behavioral, demographic, and social factors towards maintaining migration within small populations. Using a discrete-time probabilistic model to simulate repeated migrations, we found that migratory group size plays an important role in maintaining migratory knowledge within the population. Rare, large groups allow for migratory knowledge to be spread to many individuals at once. When a population learns migration information incrementally, the presence of individuals that can learn quickly, therefore transitioning rapidly into leaders, has a profound impact on migrational persistence. Furthermore, small populations are better able to maintain migratory behavior when groups rely on informed leaders as compared to using collective group knowledge, even when that collective knowledge is heavily weighted towards knowledgeable individuals. Finally, we found that both species with short lifespans and species that migrate with fixed group compositions are at especially high risk of losing their migration behavior at small population sizes.  相似文献   

12.
An earlier onset of spring has been recorded for many parts of Eurasia in recent decades. This has consequences for migratory species, both in changing the conditions encountered by individuals on reaching migratory sites and in affecting cues regulating the timing of migration where decisions to migrate are influenced by local environmental variables. Here we examine the timing of spring migration for two arctic goose populations, the pink‐footed goose Anser brachyrhynchus (during 1990–2003) and barnacle goose Branta leucopsis (during 1982–2003), which both breed on Svalbard. The satellite‐derived Normalised Difference Vegetation Index (NDVI) was used to express the onset of spring at their wintering and spring staging sites. Pink‐footed geese use several sites during spring migration, ranging from the southernmost wintering areas in Belgium to two spring staging areas in Norway, and distances between sites used along the flyway are relatively short. There was a positive correlation in the onset of spring between neighbouring sites, and the geese migrated earlier in early springs. Barnacle geese, on the other hand, have a long overseas crossing from their wintering grounds in Britain to spring staging areas in Norway. Although spring advanced in both regions, there was no corresponding correlation in the timing of onset of spring between their wintering and spring staging sites, and little evidence for barnacle geese migrating earlier over the whole study period. Hence, where geese can use spring conditions at one site as an indicator of the conditions they might encounter at the next, they have responded quickly to the advancement of spring, whereas in a situation where they cannot predict, they have not yet responded, despite the advancement of spring in the spring staging area.  相似文献   

13.
The evolution of migration in birds remains an outstanding, unresolved question in evolutionary ecology. A particularly intriguing question is why individuals in some species have been selected to migrate, whereas in other species they have been selected to be sedentary. In this paper, we suggest that this diverging selection might partially result from differences among species in the behavioural flexibility of their responses to seasonal changes in the environment. This hypothesis is supported in a comparative analysis of Palaearctic passerines. First, resident species tend to rely more on innovative feeding behaviours in winter, when food is harder to find, than in other seasons. Second, species with larger brains, relative to their body size, and a higher propensity for innovative behaviours tend to be resident, while less flexible species tend to be migratory. Residence also appears to be less likely in species that occur in more northerly regions, exploit temporally available food sources, inhabit non-buffered habitats and have smaller bodies. Yet, the role of behavioural flexibility as a response to seasonal environments is largely independent of these other factors. Therefore, species with greater foraging flexibility seem to be able to cope with seasonal environments better, while less flexible species are forced to become migratory.  相似文献   

14.
Populations of the Little Bustard Tetrax tetrax in the farmlands of Europe have declined greatly over the last century. In Western Europe, France now holds the only remaining migratory population, which currently numbers fewer than 300 displaying males. However, the movements of these birds are virtually unknown, in spite of the important implications of this information for the conservation of this species. We identified migratory movements and overwintering areas of French migratory populations, using wild individuals fitted with satellite or radio‐transmitters. Little Bustards completed their migration journey over a relatively short time period (2–5 days), with nocturnal migration flights of 400–600 km per night. All birds overwintered in Iberia. In addition, we tested the consequences of captive rearing on migratory movements. French wild adults and French captive‐bred juveniles behaved similarly with regard to migration, suggesting that hand‐raising does not alter migratory movements. However, birds originating from eggs collected in Spain and reared in western France did not migrate, suggesting a genetic component to migratory behaviour. These results therefore suggest that a conservation strategy involving the release in France of birds hatched from eggs collected in Spain may imperil the expression of migratory movements of the French population. More generally, to maintain the integrity of native populations, the introduced individuals should mimic their migratory movements and behaviour.  相似文献   

15.
Many migratory birds start prebreeding moult and premigratory fuelling some months before the breeding season and face severe time constraints, while travelling up to 15,000 km between non-breeding and breeding grounds. Shorebirds typically leave Southern Hemisphere non-breeding areas over a 3-4 week period, but whether they benefit from interannually consistent timing of departure is unknown. Here, I show that individual bar-tailed godwits (Limosa limosa baueri) from New Zealand are highly consistent in their migratory scheduling. Most birds left within the same week each year (between-year repeatability, r, of 0.83) and adult males, which moult into a bright breeding plumage, were also highly repeatable in the extent of their prebreeding moult (r=0.86). This is consistent with the hypothesis that birds have individually optimized migration schedules. Within adult males, but not females, smaller birds tended to migrate earlier than large birds. Whether this reflects differences in size-related migration speed, optimal breeding time at different sites or size-related natural or sexual selection pressures, remains unknown.  相似文献   

16.
Like many other migratory birds, the black-throated blue warbler (Dendroica caerulescens) shows pronounced differences in migratory behaviour and other traits between populations: birds in the southern part of the breeding range have darker plumage and migrate to the eastern Caribbean during the winter, whereas those in the north have lighter plumage and migrate to the western Caribbean. We examined the phylogeography of this species, using samples collected from northern and southern populations, to determine whether differentiation between these populations dates to the Pleistocene or earlier, or whether differences in plumage and migratory behaviour have arisen more recently. We analysed variation at 369 bp of the mitochondrial control region domain I and also at seven nuclear microsatellites. Analyses revealed considerable genetic variation, but the vast majority of this variation was found within rather than between populations, and there was little differentiation between northern and southern populations. Phylogeographic analyses revealed a very shallow phylogenetic tree, a star-like haplotype network, and a unimodal mismatch distribution, all indicative of a recent range expansion from a single refugium. Coalescent modelling approaches also indicated a recent common ancestor for the entire group of birds analysed, no split between northern and southern populations, and high levels of gene flow. These results show that Pleistocene or earlier events have played little role in creating differences between northern and southern populations, suggesting that migratory and other differences between populations have arisen very recently. The implications of these results for the evolution of migration and defining taxonomic groups for conservation efforts are discussed.  相似文献   

17.
This study aims to investigate causes and mechanisms controlling protandrous migration patterns (the earlier breeding area arrival of males relative to females) and inter-sexual differences in timing of migration in relation to the recent climate-driven changes in phenology. Using standardised ringing data from a single site for eight North European migratory passerines collected throughout 22 years, we analysed sex-differentiated migration patterns, protandry and phenology of the entire populations. Our results show protandrous patterns for the first as well as later arriving individuals for all studied species. Males show more synchronous migration patterns compared to females and, hence, first arriving females followed males more closely than later arriving individuals. However, we found no inter-sexual differences in arrival trends as both sexes advance spring arrival over time with the largest change for the first arriving individuals. These findings seem in support of the “mate opportunity” hypothesis, as the arrival of males and females is strongly coupled and both sexes seem to compete for early arrival. Changes in timing of arrival in males and females as a response to climatic changes may influence subsequent mating decisions, with subsequent feedbacks on population dynamics such as reproductive success and individual fitness. However, during decades of consistent earlier spring arrival in all phases of migration we found no evidence of inter-sexual phenological differences.  相似文献   

18.
Climate change can influence many aspects of avian phenology and especially migratory shifts and changes in breeding onset receive much research interest in this context. However, changes in these different life‐cycle events in birds are often investigated separately and by means of ringing records of mixed populations. In this long‐term study on the willow warbler Phylloscopus trochilus, we investigated timing of spring and autumn migration in conjunction with timing of breeding. We made distinction among individuals with regard to age, sex, juvenile origin and migratory phase. The data set comprised 22‐yr of ringing records and two temporally separated data sets of egg‐laying dates and arrival of the breeding population close to the ringing site. The results reveal an overall advancement consistent in most, but not all, phenological events. During spring migration, early and median passage of males and females became earlier by between 4.4 to 6.3 d and median egg‐laying dates became earlier by 5 d. Male arrival advanced more, which may lead to an increase in the degree of protandry in the future. Among breeding individuals, only female arrival advanced in timing. In autumn, adults and locally hatched juvenile females did not advanced median passage, but locally hatched juvenile males appeared 4.2 d earlier. Migrating juvenile males and females advanced passage both in early and median migratory phase by between 8.4 to 10.1 d. The dissimilarities in the response between birds of different age, sex and migratory phase emphasize that environmental change may elicit intra‐specific selection pressures. The overall consistency of the phenological change in spring, autumn and egg‐laying, coupled with the unchanged number of days between median spring and autumn migration in adults, indicate that the breeding area residence has advanced seasonally but remained temporally constant.  相似文献   

19.
Knowledge about migratory connectivity, the degree to which individuals from the same breeding site migrate to the same wintering site, is essential to understand processes affecting populations of migrants throughout the annual cycle. Here, we study the migration system of a long-distance migratory bird, the Montagu''s harrier Circus pygargus, by tracking individuals from different breeding populations throughout northern Europe. We identified three main migration routes towards wintering areas in sub-Saharan Africa. Wintering areas and migration routes of different breeding populations overlapped, a pattern best described by ‘weak (diffuse) connectivity’. Migratory performance, i.e. timing, duration, distance and speed of migration, was surprisingly similar for the three routes despite differences in habitat characteristics. This study provides, to our knowledge, a first comprehensive overview of the migration system of a Palaearctic-African long-distance migrant. We emphasize the importance of spatial scale (e.g. distances between breeding populations) in defining patterns of connectivity and suggest that knowledge about fundamental aspects determining distribution patterns, such as the among-individual variation in mean migration directions, is required to ultimately understand migratory connectivity. Furthermore, we stress that for conservation purposes it is pivotal to consider wintering areas as well as migration routes and in particular stopover sites.  相似文献   

20.
High population density and nutrition restriction can lead to phase variation in morphology and development, and subsequently induce changes in the reaction norms of adult flight in migrant insects. However, response of migratory propensity to such stress in Endopterygote insects, especially in several species of Lepidoptera, remains unclear. In this study, larval and adult developmental responses to crowding and food stress were investigated in the migratory moth, Cnaphalocrocis medinalis (Guenée). A high larval rearing density significantly reduced pupal mass, survival rate and female fecundity. Larvae developed rapidly under crowding conditions, and time to pupation was 2 days earlier than individuals reared alone. By contrast, short‐term starvation and associated compensatory growth prolonged larval duration by 3–4 days and pupal duration by 1–2 days. It also reduced the pupal mass, but showed no detectable effects on female reproductive performance. Both sexes had similar development strategies; however, females seemed to be more sensitive to crowding and food shortage than males. A positive effect was expected if such stress factors acted as cues that triggering a behavioural or physiological shift to a distinct migratory phase. To the contrary, we found no proof that crowding and starvation caused maturation delay in female reproductive development. All treatments did not significantly increase female pre‐oviposition period. Therefore, we concluded that life developmental responses to crowding and food shortage in this species were different. Adult migration propensity was not enhanced under such stress conditions during the larval phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号