首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The pathogen Pseudomonas syringae requires a type‐III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type‐III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type‐III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associated with effector‐triggered immunity. Here we show that DC3000 hopK1 mutants are reduced in their ability to grow in Arabidopsis, and produce reduced disease symptoms. Arabidopsis transgenically expressing HopK1 are reduced in PAMP‐triggered immune responses compared with wild‐type plants. An N‐terminal region of HopK1 shares similarity with the corresponding region in the well‐studied type‐III effector AvrRps4; however, their C‐terminal regions are dissimilar, indicating that they have different effector activities. HopK1 is processed in planta at the same processing site found in AvrRps4. The processed forms of HopK1 and AvrRps4 are chloroplast localized, indicating that the shared N‐terminal regions of these type‐III effectors represent a chloroplast transit peptide. The HopK1 contribution to virulence and the ability of HopK1 and AvrRps4 to suppress immunity required their respective transit peptides, but the AvrRps4‐induced HR did not. Our results suggest that a primary virulence target of these type‐III effectors resides in chloroplasts, and that the recognition of AvrRps4 by the plant immune system occurs elsewhere. Moreover, our results reveal that distinct type‐III effectors use a cleavable transit peptide to localize to chloroplasts, and that targets within this organelle are important for immunity.  相似文献   

2.
GacS/GacA is a conserved two-component system that functions as a master regulator of virulence-associated traits in many bacterial pathogens, including Pseudomonas spp., that collectively infect both plant and animal hosts. Among many GacS/GacA-regulated traits, type III secretion of effector proteins into host cells plays a critical role in bacterial virulence. In the opportunistic plant and animal pathogen Pseudomonas aeruginosa, GacS/GacA negatively regulates the expression of type III secretion system (T3SS)-encoding genes. However, in the plant pathogenic bacterium Pseudomonas syringae, strain-to-strain variation exists in the requirement of GacS/GacA for T3SS deployment, and this variability has limited the development of predictive models of how GacS/GacA functions in this species. In this work we re-evaluated the function of GacA in P. syringae pv. tomato DC3000. Contrary to previous reports, we discovered that GacA negatively regulates the expression of T3SS genes in DC3000, and that GacA is not required for DC3000 virulence inside Arabidopsis leaf tissue. However, our results show that GacA is required for full virulence of leaf surface-inoculated bacteria. These data significantly revise current understanding of GacS/GacA in regulating P. syringae virulence.  相似文献   

3.
Pseudomonas syringae is a bacterial phytopathogen that utilizes the type III secretion system to inject effector proteins into plant host cells. Pseudomonas syringae can infect a wide range of plant hosts, including agronomically important crops such as tomatoes and beans. The ability of P. syringae to infect such numerous hosts is caused, in part, by the diversity of effectors employed by this phytopathogen. Over 60 different effector families exist in P. syringae; one such family is HopF, which contains over 100 distinct alleles. Despite this diversity, research has focused on only two members of this family: HopF1 from P. syringae pathovar phaseolicola 1449B and HopF2 from P. syringae pathovar tomato DC3000. In this study, we review the research on HopF family members, including their host targets and molecular mechanisms of immunity suppression, and their enzymatic function. We also provide a phylogenetic analysis of this expanding effector family which provides a basis for a proposed nomenclature to guide future research. The extensive genetic diversity that exists within the HopF family presents a great opportunity to study how functional diversification on an effector family contributes to host specialization.  相似文献   

4.
5.
Primary virulence factors of Pseudomonas syringae pv. tomato DC3000 include the phytotoxin coronatine (COR) and a repertoire of 29 effector proteins injected into plant cells by the type III secretion system (T3SS). DC3000 derivatives differentially producing COR, the T3SS machinery and subsets of key effectors were constructed and assayed in leaves of Nicotiana benthamiana. Bacteria were inoculated by the dipping of whole plants and assayed for population growth and the production of chlorotic spots on leaves. The strains fell into three classes. Class I strains are T3SS+ but functionally effectorless, grow poorly in planta and produce faint chlorotic spots only if COR+. Class II strains are T3SS or, if T3SS+, also produce effectors AvrPtoB and HopM1. Class II strains grow better than class I strains in planta and, if COR+, produce robust chlorotic spots. Class III strains are T3SS+ and minimally produce AvrPtoB, HopM1 and three other effectors encoded in the P. syringae conserved effector locus. These strains differ from class II strains in growing better in planta, and produce chlorotic spots without COR if the precursor coronafacic acid is produced. Assays for chlorotic spot formation, in conjunction with pressure infiltration of low‐level inoculum and confocal microscopy of fluorescent protein‐labelled bacteria, revealed that single bacteria in the apoplast are capable of producing colonies and associated leaf spots in a 1 : 1 : 1 manner. However, COR makes no significant contribution to the bacterial colonization of the apoplast, but, instead, enables a gratuitous, semi‐quantitative, surface indicator of bacterial growth, which is determined by the strain's effector composition.  相似文献   

6.
7.
8.
The apparent lack of durability of many resistance (R) genes highlights the need for the constant identification of new genetic sources of resistance for the breeding of new disease‐resistant crop cultivars. To this end, we screened a collection of accessions of eggplant and close relatives for resistance against Pseudomonas syringae pv. tomato (Pto) and Xanthomonas euvesicatoria (Xeu), foliar plant pathogens of many solanaceous crops. Both pathogens caused substantial disease on most genotypes of eggplant and its relatives. Promisingly, however, some of the genotypes were fully or partially resistant to either of the pathogens, suggesting the presence of effective resistance determinants in these genotypes. Segregation of resistance to the growth of Xeu following infiltration in F2 progeny from a cross of a resistant and susceptible genotype suggests that resistance to Xeu is inherited as a multigenic trait. With regard to Pto, a mutant strain lacking all 28 functional type III secreted effectors, and a Pseudomonas fluorescens strain expressing a P. syringae type III secretion system (T3SS), both elicit a strong cell death response on most eggplant lines. Several genotypes thus appear to harbour a mechanism for the direct recognition of a component of the T3SS. Therefore, eggplant and its close relatives are promising resources to unravel novel aspects of plant immunity and to identify new candidate R genes that could be employed in other Solanaceae in which Xeu and Pto cause agriculturally relevant diseases.  相似文献   

9.
Bordetella bronchiseptica infects a wide variety of mammals, and the type III secretion system (T3SS) is involved in long‐term colonization by Bordetella in the trachea and lung. T3SS translocates virulence factors (commonly referred to as effectors) into host cells, leading to alterations in the host's physiological function. The Bordetella effectors BopN and BteA are known to have roles in up‐regulation of IL‐10 and cytotoxicity, respectively. Nevertheless, the mechanism by which BopN is translocated into host cells has not been examined in sufficient detail. Therefore, to determine the precise mechanisms of the BopN translocation into host cells, we built truncated derivatives of BopN and evaluated the derivatives’ ability to translocation into host cells by adenylate cyclase‐mediated translocation assay. It was found that N‐terminal amino acid (aa) residues 1–200 of BopN are sufficient for its translocation into host cells. Interestingly, BopN translocation was completely blocked by deletion of the N‐terminal aa residues 6–50, indicating that the N‐terminal region is critical for BopN translocation. Furthermore, BopN appears to play an auxiliary role in BteA‐mediated cytotoxicity. Thus, BopN can apparently translocate into host cells and may facilitate activity of BteA.
  相似文献   

10.
Pseudomonas syringae is a model phytopathogenic bacterium that uses the type III secretion system (T3SS) to cause lethal diseases in staple crops and thus presents a threat to food security worldwide. Great progress has been made in delineating the biochemical mechanisms and cellular targets of T3SS effectors, but less is known about the signalling pathways and molecular mechanisms of T3SS regulators. In recent years, thanks to the popularity and power of genome-wide mutant screening and high-throughput sequencing, new regulatory proteins (such as RhpR, AefR, AlgU and CvsR) and proteases (such as Lon and RhpP) have been identified as T3SS regulators in P. syringae pathovars. The detailed mechanisms of previously illustrated regulators (such as HrpRS, HrpL and HrpGV) have also been further studied. Notably, the two-component system RhpRS has been determined to play key roles in the modulation of T3SS via direct regulation of hrpRS and other virulence-related pathways by sensing changes in environmental signals. In addition, secondary messengers (such as c-di-GMP and ppGpp) have been shown to fine-tune the activity of T3SS. Overall, these studies have suggested the existence of a highly intricate regulatory network for T3SS, which controls the pathogenicity of P. syringae. This short review summarizes studies of P. syringae T3SS regulation and the known mechanisms of key regulators.  相似文献   

11.
丁香假单胞菌(Pseudomonas syringae)是引起许多作物病害的一种革兰氏阴性病原细菌。该细菌入侵寄主植物细胞主要通过其III型分泌系统(type III secretion system,T3SS)将效应蛋白转入到寄主真核细胞内,抑制寄主免疫功能,以达到成功侵染和定殖的目的。III型分泌系统的主调控因子RhpR/S通过感受环境信号的变化直接调控hrpR/S及其他毒力相关通路。同时III型分泌系统基因的表达也受到其他调控因子的影响,包括σ因子HrpL、双组分系统GacA/S、Lon蛋白酶、第二信使分子和环境信号等。本文在简要介绍丁香假单胞菌III型分泌系统组成和功能的基础上,综述丁香假单胞菌III型分泌系统调控机制的最新研究进展,以期为深入探究病原菌的致病机制提供参考和思路。  相似文献   

12.
Pseudomonas syringae pv. actinidiae ICMP 18884 biovar 3 (Psa3) produces necrotic lesions during infection of its kiwifruit host. Bacterial growth in planta and lesion formation are dependent upon a functional type III secretion system (T3S), which translocates multiple effector proteins into host cells. Associated with the T3S locus is the conserved effector locus (CEL), which has been characterized and shown to be essential for the full virulence in other P. syringae pathovars. Two effectors at the CEL, hopM1 and avrE1, as well as an avrE1-related non-CEL effector, hopR1, have been shown to be redundant in the model pathogen P. syringae pv. tomato DC3000 (Pto), a close relative of Psa. However, it is not known whether CEL-related effectors are required for Psa pathogenicity. The Psa3 allele of hopM1, and its associated chaperone, shcM, have diverged significantly from their orthologs in Pto. Furthermore, the CEL effector hopAA1-1, as well as a related non-CEL effector, hopAA1-2, have both been pseudogenized. We have shown that HopM1 does not contribute to Psa3 virulence due to a truncation in shcM, a truncation conserved in the Psa lineage, probably due to the need to evade HopM1-triggered immunity in kiwifruit. We characterized the virulence contribution of CEL and related effectors in Psa3 and found that only avrE1 and hopR1, additively, are required for in planta growth and lesion production. This is unlike the redundancy described for these effectors in Pto and indicates that these two Psa3 genes are key determinants essential for kiwifruit bacterial canker disease.  相似文献   

13.
Upon sensing attack by pathogens and insect herbivores, plants release complex mixtures of volatile compounds. Here, we show that the infection of lima bean (Phaseolus lunatus L.) plants with the non-host bacterial pathogen Pseudomonas syringae pv. tomato led to the production of microbe-induced plant volatiles (MIPVs). Surprisingly, the bacterial type III secretion system, which injects effector proteins directly into the plant cytosol to subvert host functions, was found to prime both intra- and inter-specific defense responses in neighbouring wild tobacco (Nicotiana benthamiana) plants. Screening of each of 16 effectors using the Pseudomonas fluorescens effector-to-host analyser revealed that an effector, HopP1, was responsible for immune activation in receiver tobacco plants. Further study demonstrated that 1-octen-3-ol, 3-octanone and 3-octanol are novel MIPVs emitted by the lima bean plant in a HopP1-dependent manner. Exposure to synthetic 1-octen-3-ol activated immunity in tobacco plants against a virulent pathogen Pseudomonas syringae pv. tabaci. Our results show for the first time that a bacterial type III effector can trigger the emission of C8 plant volatiles that mediate defense priming via plant–plant interactions. These results provide novel insights into the role of airborne chemicals in bacterial pathogen-induced inter-specific plant–plant interactions.  相似文献   

14.
The Gram‐negative bacterium Xanthomonas euvesicatoria (Xcv) is the causal agent of bacterial spot disease in pepper and tomato. Xcv pathogenicity depends on a type III secretion (T3S) system that delivers effector proteins into host cells to suppress plant immunity and promote disease. The pool of known Xcv effectors includes approximately 30 proteins, most identified in the 85‐10 strain by various experimental and computational techniques. To identify additional Xcv 85‐10 effectors, we applied a genome‐wide machine‐learning approach, in which all open reading frames (ORFs) were scored according to their propensity to encode effectors. Scoring was based on a large set of features, including genomic organization, taxonomic dispersion, hypersensitive response and pathogenicity (hrp)‐dependent expression, 5′ regulatory sequences, amino acid composition bias and GC content. Thirty‐six predicted effectors were tested for translocation into plant cells using the hypersensitive response (HR)‐inducing domain of AvrBs2 as a reporter. Seven proteins (XopAU, XopAV, XopAW, XopAP, XopAX, XopAK and XopAD) harboured a functional translocation signal and their translocation relied on the HrpF translocon, indicating that they are bona fide T3S effectors. Remarkably, four belong to novel effector families. Inactivation of the xopAP gene reduced the severity of disease symptoms in infected plants. A decrease in cell death and chlorophyll content was observed in pepper leaves inoculated with the xopAP mutant when compared with the wild‐type strain. However, populations of the xopAP mutant in infected leaves were similar in size to those of wild‐type bacteria, suggesting that the reduction in virulence was not caused by impaired bacterial growth.  相似文献   

15.
To ensure the optimal infectivity on contact with host cells, pathogenic Pseudomonas syringae has evolved a complex mechanism to control the expression and construction of the functional type III secretion system (T3SS) that serves as a dominant pathogenicity factor. In this study, we showed that the hrpF gene of P. syringae pv. averrhoi, which is located upstream of hrpG, encodes a T3SS‐dependent secreted/translocated protein. Mutation of hrpF leads to the loss of bacterial ability on elicitation of disease symptoms in the host and a hypersensitive response in non‐host plants, and the secretion or translocation of the tested T3SS substrates into the bacterial milieu or plant cells. Moreover, overexpression of hrpF in the wild‐type results in delayed HR and reduced t3ss expression. The results of protein–protein interactions demonstrate that HrpF interacts directly with HrpG and HrpA in vitro and in vivo, and protein stability assays reveal that HrpF assists HrpA stability in the bacterial cytoplasm, which is reduced by a single amino acid substitution at the 67th lysine residue of HrpF with alanine. Taken together, the data presented here suggest that HrpF has two roles in the assembly of a functional T3SS: one by acting as a negative regulator, possibly involved in the HrpSVG regulation circuit via binding to HrpG, and the other by stabilizing HrpA in the bacterial cytoplasm via HrpF–HrpA interaction prior to the secretion and formation of Hrp pilus on the bacterial surface.  相似文献   

16.
Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram‐negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host__s immune system. To counteract the effectors, plants have evolved disease‐resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E‐deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum ‘N509’. Inoculation with the Pta ∆hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta ∆hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C‐terminal truncated HopAZ1 abolished HopAZ1‐dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509.  相似文献   

17.
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors.  相似文献   

18.
Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host__s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum ‘N509’. Inoculation with the Pta ∆hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta ∆hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509.  相似文献   

19.
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n‐octyl‐oligo‐oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N‐dimethyldodecylamine N‐oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size‐dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore.  相似文献   

20.
The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector‐triggered immunity (ETI) and pathogen‐associated molecular pattern (PAMP)‐triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N‐terminal two‐thirds was sufficient for mitochondrial localization. A HopG1–GFP fusion lacking HopG1's N‐terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N‐terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1's target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号