首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosins‐I are conserved proteins that bear an N‐terminal motor head followed by a Tail Homology 1 (TH1) lipid‐binding domain. Some myosins‐I have an additional C‐terminal extension (Cext) that promotes Arp2/3 complex‐dependent actin polymerization. The head and the tail are separated by a neck that binds calmodulin or calmodulin‐related light chains. Myosins‐I are known to participate in actin‐dependent membrane remodelling. However, the molecular mechanisms controlling their recruitment and their biochemical activities in vivo are far from being understood. In this study, we provided evidence suggesting the existence of an inhibitory interaction between the TH1 domain of the yeast myosin‐I Myo5 and its Cext. The TH1 domain prevented binding of the Myo5 Cext to the yeast WIP homologue Vrp1, Myo5 Cext‐induced actin polymerization and recruitment of the Myo5 Cext to endocytic sites. Our data also indicated that calmodulin dissociation from Myo5 weakened the interaction between the neck and TH1 domains and the Cext. Concomitantly, calmodulin dissociation triggered Myo5 binding to Vrp1, extended the myosin‐I lifespan at endocytic sites and activated Myo5‐induced actin polymerization.  相似文献   

2.
Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and volume. SM myosin (SMM) and non‐muscle myosin (NMM) play important roles in mediating SM tone and cell proliferation, but these molecules have been less studied in the prostate. Rat prostate and cultured primary human prostate SM and epithelial cells were utilized. In vitro organ bath studies were performed to explore contractility of rat prostate. SMM isoforms, including SM myosin heavy chain (MHC) isoforms (SM1/2 and SM‐A/B) and myosin light chain 17 isoforms (LC17a/b), and isoform ratios were determined via competitive RT‐PCR. SM MHC and NM MHC isoforms (NMMHC‐A, NMMHC‐B and NMMHC‐C) were further analysed via Western blotting and immunofluorescence microscopy. Prostatic SM generated significant force induced by phenylephrine with an intermediate tonicity between phasic bladder and tonic aorta type contractility. Correlating with this kind of intermediate tonicity, rat prostate mainly expressed LC17a and SM1 but with relatively equal expression of SM‐A/SM‐B at the mRNA level. Meanwhile, isoforms of NMMHC‐A, B, C were also abundantly present in rat prostate with SMM present only in the stroma, while NMMHC‐A, B, C were present both in the stroma and endothelial. Additionally, the SMM selective inhibitor blebbistatin could potently relax phenylephrine pre‐contracted prostate SM. In conclusion, our novel data demonstrated the expression and functional activities of SMM and NMM isoforms in the rat prostate. It is suggested that the isoforms of SMM and NMM could play important roles in BPH development and bladder outlet obstruction.  相似文献   

3.

Myelin, which is a multilamellar structure that sheathes the axon, is essential for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes (OLs), which wrap their plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we reported that myosin ID (Myo1d) is distributed in rat CNS myelin and is especially enriched in the outer and inner cytoplasm-containing loops. Further, small interfering RNA (siRNA) treatment highlighted the involvement of Myo1d in the formation and maintenance of myelin in cultured OLs. Myo1d is one of the unconventional myosins, which may contribute to membrane dynamics, either in the wrapping process or transport of myelin membrane proteins during myelination. However, the function of Myo1d in myelin formation in vivo remains unclear. In the current study, to clarify the function of Myo1d in vivo, we surgically injected siRNA in the corpus callosum of a cuprizone-treated demyelination mouse model via stereotaxy. Knockdown of Myo1d expression in vivo decreased the intensities of myelin basic protein and myelin proteolipid protein immunofluorescence staining. However, neural/glial antigen 2-positive signals and adenomatous polyposis coli (APC/CC1)-positive cell numbers were unchanged by siRNA treatment. Furthermore, Myo1d knockdown treatment increased pro-inflammatory microglia and astrocytes during remyelination. In contrast, anti-inflammatory microglia were decreased. The percentage of caspase 3-positive cells in total CC1-positive OLs were also increased by Myo1d knockdown. These results indicated that Myo1d plays an important role during the regeneration process after demyelination.

  相似文献   

4.
In Saccharomyces cerevisiae, the unconventional myosin Myo2p is of fundamental importance in polarized growth. We explore the role of the neck region and its associated light chains in regulating Myo2p function. Surprisingly, we find that precise deletion of the six IQ sites in the neck region results in a myosin, Myo2-Δ6IQp, that can support the growth of a yeast strain at 90% the rate of a wild-type isogenic strain. We exploit this mutant in a characterization of the light chains of Myo2p. First, we demonstrate that the localization of calmodulin to sites of polarized growth largely depends on the IQ sites in the neck of Myo2p. Second, we demonstrate that a previously uncharacterized protein, Mlc1p, is a myosin light chain of Myo2p. MLC1 (YGL106w) is an essential gene that exhibits haploinsufficiency. Reduced levels of MYO2 overcome the haploinsufficiency of MLC1. The mutant MYO2-Δ6IQ is able to suppress haploinsufficiency but not deletion of MLC1. We used a modified gel overlay assay to demonstrate a direct interaction between Mlc1p and the neck of Myo2p. Overexpression of MYO2 is toxic, causing a severe decrease in growth rate. When MYO2 is overexpressed, Myo2p is fourfold less stable than in a wild-type strain. High copies of MLC1 completely overcome the growth defects and increase the stability of Myo2p. Our results suggest that Mlc1p is responsible for stabilizing this myosin by binding to the neck region.  相似文献   

5.
We have shown preferential expression of both mRNA and corresponding protein for myosin VI (Myo6) in the murine hippocampus within 24 h after the extreme traumatic experience, water-immersion restraint stress (WIRS), prior to a drastic decrease in neural progenitor proliferation in the dentate gyrus. Myosin (Myo6) protein levels were significantly increased in hippocampus within 24 h after flashback experience in mice previously exposed to WIRS. Myo6 protein was ubiquitously distributed in discrete mouse brain regions with exceptionally high expression in olfactory bulb, whereas Myo6 protein was expressed in cultured rat astroglia and neurons, in addition to Myo6 mRNA expression by cultured neural progenitors. In mouse embryonal carcinoma P19 cells endowed to proliferate and differentiate, Myo6 protein was expressed in line with astroglial marker protein expression. Transient over-expression of Myo6 induced a significant decrease in the size of clustered aggregates as an index of self-replication in P19 cells. Immunoprecipitation analysis revealed the interaction between Myo6 and the RNA-binding protein, translocated in liposarcoma (TLS), while TLS was predominantly expressed by neurons in the cortex, striatum, cerebellum, and hippocampus. These results suggest that Myo6 may play a pivotal role in the mechanism underlying the suppressed adult neurogenesis after traumatic stress in association with TLS.  相似文献   

6.
Eya1 and other Eya proteins are important regulators of progenitor proliferation, cell differentiation and morphogenesis in all three germ layers. At present, most of our knowledge of Eya1 distribution is based on in situ hybridization for Eya1 mRNA. However, to begin to dissect the mechanisms underlying Eya1 functions, we need a better understanding of the spatiotemporal distribution of Eya1 proteins during embryonic development, their subcellular localization and their levels of expression in various tissues. Here we report the localization of Eya1 protein throughout embryonic development from neural plate stages to tadpole stages of Xenopus laevis using a specific antibody for Xenopus Eya1. Our study confirms the expression of Eya1 protein in cranial placodes, placodally derived sensory primordia (olfactory epithelium, otic vesicle, lateral line primordia) and cranial ganglia, as well as in somites, secondary heart field and pharyngeal endoderm. In addition, we report here a novel expression of Eya1 proteins in scattered epidermal cells in Xenopus. Our findings also reveal that, while being predominantly expressed in nuclei in most expression domains, Eya1 protein is also localized to the cytoplasm, in particular in the early preplacodal ectoderm, some placode-derived ganglia and a subset of epidermal cells. While some cytoplasmic roles of Eya1 have been previously described in other contexts, the functions of cytoplasmic Eya1 in the preplacodal ectoderm, cranial ganglia and epidermal cells remain to be investigated.  相似文献   

7.
Myelin is a special multilamellar structure involved in various functions in the nervous system. In the central nervous system, the oligodendrocyte (OL) produces myelin and has a unique morphology. OLs have a dynamic membrane sorting system associated with cytoskeletal organization, which aids in the production of myelin. Recently, it was reported that the assembly and disassembly of actin filaments is crucial for myelination. However, the partner myosin molecule which associates with actin filaments during the myelination process has not yet been identified. One candidate myosin is unconventional myosin ID (Myo1d) which is distributed throughout central nervous system myelin; however, its function is still unclear. We report here that Myo1d is expressed during later stages of OL differentiation, together with myelin proteolipid protein (PLP). In addition, Myo1d is distributed at the leading edge of the myelin-like membrane in cultured OL, colocalizing mainly with actin filaments, 2′,3′-cyclic nucleotide phosphodiesterase and partially with PLP. Myo1d-knockdown with specific siRNA induces significant morphological changes such as the retraction of processes and degeneration of myelin-like membrane, and finally apoptosis. Furthermore, loss of Myo1d by siRNA results in the impairment of intracellular PLP transport. Together, these results suggest that Myo1d may contribute to membrane dynamics either in wrapping or transporting of myelin membrane proteins during formation and maintenance of myelin.  相似文献   

8.
The expression of mesencephalic brain derived neurotrophic factor (BDNF) has been shown to be regulated by dopaminergic neuronal functioning and glutamate receptors (GluRs). In turn, BDNF participates in the regulation of mesencephalic GluRs’ expression. In the present study we analyzed, using semi-quantitative RT-PCR, the effect of BDNF as well as of the GluRs agonists NMDA and trans-(±)-1-Amino-(1S,3R)-cyclopentane dicarboxylic acid (t-ACPD), on the expression levels of the NMDA GluR subunit 1 (NR1) mRNA, using rat cultured mesencephalic neurons. In the course of this study, a novel rat mRNA splice variant of NR1 was identified. This new NR1 mRNA isoform is characterized by the insertion of an 82 base pair intron containing an inframe stop codon, thus predicting the expression of a putative truncated protein of 465 amino acids. The RT-PCR and in situ hybridization reveals that the novel NR1 mRNA is expressed in various brain regions of the rat embryo, whereas no expression was detected in the adult rat brain. The modulation of the novel NR1 mRNA isoform by both BDNF and the metabotropic GluR agonist t-ACPD, suggests that the resulting putative NR1 truncated protein may be relevant in the regulatory network of glutamatergic neurotransmission in the developing central nervous system.  相似文献   

9.
ATM, the gene mutated in ataxia telangiectasia, is a protein essential for handling DNA strand breaks. We recently isolated the Xenopus homologue of ATM, X-ATM and we report here the detailed expression pattern of the protein and the mRNA during early Xenopus development. During the cleavage stages, ATM protein was concentrated in and around the nuclei of all cells with low levels of expression also detected in the cytoplasm. Following neurulation, increased protein levels were detected in the nuclei of developing somites and in the central nervous system. Areas of high protein expression correlated with areas of increased mRNA expression which was detected in the nuclei of somites and the developing lens. Received: 2 December 1999 / Accepted: 4 February 2000  相似文献   

10.
MYO2 encodes a type V myosin heavy chain needed for the targeting of vacuoles and secretory vesicles to the growing bud of yeast. Here we describe new myo2 alleles containing conditional lethal mutations in the COOH-terminal tail domain. Within 5 min of shifting to the restrictive temperature, the polarized distribution of secretory vesicles is abolished without affecting the distribution of actin or the mutant Myo2p, showing that the tail has a direct role in vesicle targeting. We also show that the actin cable-dependent translocation of Myo2p to growth sites does not require secretory vesicle cargo. Although a fusion protein containing the Myo2p tail also concentrates at growth sites, this accumulation depends on the polarized delivery of secretory vesicles, implying that the Myo2p tail binds to secretory vesicles. Most of the new mutations alter a region of the Myo2p tail conserved with vertebrate myosin Vs but divergent from Myo4p, the myosin V involved in mRNA transport, and genetic data suggest that the tail interacts with Smy1p, a kinesin homologue, and Sec4p, a vesicle-associated Rab protein. The data support a model in which the Myo2p tail tethers secretory vesicles, and the motor transports them down polarized actin cables to the site of exocytosis.  相似文献   

11.
The molecular motor, Myo1c, a member of the myosin family, is widely expressed in vertebrate tissues. Its presence at strategic places in the stereocilia of the hair cells in the inner ear and studies using transgenic mice expressing a mutant Myo1c that can be selectively inhibited implicate it as the mediator of slow adaptation of mechanoelectrical transduction, which is required for balance. Here, we have studied the structural, mechanical and biochemical properties of Myo1c to gain an insight into how this molecular motor works. Our results support a model in which Myo1c possesses a strain-sensing ADP-release mechanism, which allows it to adapt to mechanical load.  相似文献   

12.
Trafficking of mRNA molecules from the nucleus to distal processes in neural cells is mediated by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 trans‐acting factors. Although hnRNP A2/B1 is alternatively spliced to generate four isoforms, most functional studies have not distinguished between these isoforms. Here, we show, using isoform‐specific antibodies and isoform‐specific green fluorescent protein (GFP)‐fusion expression constructs, that A2b is the predominant cytoplasmic isoform in neural cells, suggesting that it may play a key role in mRNA trafficking. The differential subcellular distribution patterns of the individual isoforms are determined by the presence or absence of alternative exons that also affect their dynamic behavior in different cellular compartments, as measured by fluorescence correlation spectroscopy. Expression of A2b is also differentially regulated with age, species and cellular development. Furthermore, coinjection of isoform‐specific antibodies and labeled RNA into live oligodendrocytes shows that the assembly of RNA granules is impaired by blockade of A2b function. These findings suggest that neural cells modulate mRNA trafficking by regulating alternative splicing of hnRNP A2/B1 and controlling expression levels of A2b, which may be the predominant mediator of cytoplasmic‐trafficking functions. These findings highlight the importance of considering isoform‐specific functions for alternatively spliced proteins.  相似文献   

13.
The light chain binding domain of rat myosin 1d consists of two IQ-motifs, both of which bind the light chain calmodulin (CaM). To analyze the Myo1d ATPase activity as a function of the IQ-motifs and Ca2+/CaM binding, we expressed and affinity purified the Myo1d constructs Myo1d-head, Myo1d-IQ1, Myo1d-IQ1.2, Myo1d-IQ2 and Myo1dDeltaLV-IQ2. IQ1 exhibited a high affinity for CaM both in the absence and presence of free Ca2+. IQ2 had a lower affinity for CaM in the absence of Ca2+ than in the presence of Ca2+. The actin-activated ATPase activity of Myo1d was approximately 75% inhibited by Ca2+-binding to CaM. This inhibition was observed irrespective of whether IQ1, IQ2 or both IQ1 and IQ2 were fused to the head. Based on the measured Ca2+-dependence, we propose that Ca2+-binding to the C-terminal pair of high affinity sites in CaM inhibits the Myo1d actin-activated ATPase activity. This inhibition was due to a conformational change of the C-terminal lobe of CaM remaining bound to the IQ-motif(s). Interestingly, a similar but Ca2+-independent inhibition of Myo1d actin-activated ATPase activity was observed when IQ2, fused directly to the Myo1d-head, was rotated through 200 degrees by the deletion of two amino acids in the lever arm alpha-helix N-terminal to the IQ-motif.  相似文献   

14.
15.
In the current model of mitochondrial trafficking, Miro1 and Miro2 Rho‐GTPases regulate mitochondrial transport along microtubules by linking mitochondria to kinesin and dynein motors. By generating Miro1/2 double‐knockout mouse embryos and single‐ and double‐knockout embryonic fibroblasts, we demonstrate the essential and non‐redundant roles of Miro proteins for embryonic development and subcellular mitochondrial distribution. Unexpectedly, the TRAK1 and TRAK2 motor protein adaptors can still localise to the outer mitochondrial membrane to drive anterograde mitochondrial motility in Miro1/2 double‐knockout cells. In contrast, we show that TRAK2‐mediated retrograde mitochondrial transport is Miro1‐dependent. Interestingly, we find that Miro is critical for recruiting and stabilising the mitochondrial myosin Myo19 on the mitochondria for coupling mitochondria to the actin cytoskeleton. Moreover, Miro depletion during PINK1/Parkin‐dependent mitophagy can also drive a loss of mitochondrial Myo19 upon mitochondrial damage. Finally, aberrant positioning of mitochondria in Miro1/2 double‐knockout cells leads to disruption of correct mitochondrial segregation during mitosis. Thus, Miro proteins can fine‐tune actin‐ and tubulin‐dependent mitochondrial motility and positioning, to regulate key cellular functions such as cell proliferation.  相似文献   

16.
The purposes of the present study were to elucidate the influences of the deficiency of teeth on masticatory muscles, such as the masseter, temporalis and digastric muscles and compare the influence among masticatory muscles. We analysed the expressions of myosin heavy chain (MyHC) isoform messenger RNA (mRNA) and protein in these muscles in the microphthalmic (mi/mi) mouse, whose teeth cannot erupt because of a mutation in the mitf gene locus. The expression levels of MyHC mRNA and protein in the masseter, temporalis, digastric, tibialis anterior and gastrocnemius muscles of +/+ and mi/mi mice were analysed with real‐time polymerase chain reaction and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis, respectively. The mi/mi masseter muscle at 8 weeks of age expressed 4·1‐fold (p < 0·05) and 3.3‐fold (p < 0·01) more MyHC neonatal mRNA and protein than that in the +/+, respectively; the expression level of MyHC neonatal protein was 19% of the total MyHC protein in the masseter muscle of mi/mi mice. In the digastric muscle, the expression levels of MyHC I mRNA and protein in the mi/mi mice were 4·7‐fold (p < 0·05) and 5‐fold (p < 0·01) higher than those in the +/+ mice. In the temporalis, tibialis anterior and gastrocnemius muscles, there was no significant difference in the expression levels of any MyHC isoform mRNA and protein between +/+ and mi/mi mice. These results indicate associations between the lack of teeth and the expression of MyHC in the masseter and digastric muscles but not such associations in the temporalis muscle, suggesting that the influence of tooth deficiency varies among the masticatory muscles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The lesser-known unconventional myosin 16 protein is essential in proper neuronal functioning and has been implicated in cell cycle regulation. Its longer Myo16b isoform contains a C-terminal tail extension (Myo16Tail), which has been shown to play a role in the neuronal phosphoinositide 3-kinase signaling pathway. Myo16Tail mediates the actin cytoskeleton remodeling, downregulates the actin dynamics at the postsynaptic site of dendritic spines, and is involved in the organization of the presynaptic axon terminals. However, the functional and structural features of this C-terminal tail extension are not well known. Here, we report the purification and biophysical characterization of the Myo16Tail by bioinformatics, fluorescence spectroscopy, and CD. Our results revealed that the Myo16Tail is functionally active and interacts with the N-terminal ankyrin domain of myosin 16, suggesting an intramolecular binding between the C and N termini of Myo16 as an autoregulatory mechanism involving backfolding of the motor domain. In addition, the Myo16Tail possesses high structural flexibility and a solvent-exposed hydrophobic core, indicating the largely unstructured, intrinsically disordered nature of this protein region. Some secondary structure elements were also observed, indicating that the Myo16Tail likely adopts a molten globule–like structure. These structural features imply that the Myo16Tail may function as a flexible display site particularly relevant in post-translational modifications, regulatory functions such as backfolding, and phosphoinositide 3-kinase signaling.  相似文献   

18.
Epithelial cells lining the intestinal tract build an apical array of microvilli known as the brush border. Each microvillus is a cylindrical membrane protrusion that is linked to a supporting actin bundle by myosin-1a (Myo1a). Mice lacking Myo1a demonstrate no overt physiological symptoms, suggesting that other myosins may compensate for the loss of Myo1a in these animals. To investigate changes in the microvillar myosin population that may limit the Myo1a KO phenotype, we performed proteomic analysis on WT and Myo1a KO brush borders. These studies revealed that WT brush borders also contain the short-tailed class I myosin, myosin-1d (Myo1d). Myo1d localizes to the terminal web and striking puncta at the tips of microvilli. In the absence of Myo1a, Myo1d peptide counts increase twofold; this motor also redistributes along the length of microvilli, into compartments normally occupied by Myo1a. FRAP studies demonstrate that Myo1a is less dynamic than Myo1d, providing a mechanistic explanation for the observed differential localization. These data suggest that Myo1d may be the primary compensating class I myosin in the Myo1a KO model; they also suggest that dynamics govern the localization and function of different yet closely related myosins that target common actin structures.  相似文献   

19.
Cytokinesis in many eukaryotes requires an actomyosin contractile ring. Here, we show that in fission yeast the myosin-II heavy chain Myo2 initially accumulates at the division site via its COOH-terminal 134 amino acids independently of F-actin. The COOH-terminal region can access to the division site at early G2, whereas intact Myo2 does so at early mitosis. Ser1444 in the Myo2 COOH-terminal region is a phosphorylation site that is dephosphorylated during early mitosis. Myo2 S1444A prematurely accumulates at the future division site and promotes formation of an F-actin ring even during interphase. The accumulation of Myo2 requires the anillin homologue Mid1 that functions in proper ring placement. Myo2 interacts with Mid1 in cell lysates, and this interaction is inhibited by an S1444D mutation in Myo2. Our results suggest that dephosphorylation of Myo2 liberates the COOH-terminal region from an intramolecular inhibition. Subsequently, dephosphorylated Myo2 is anchored by Mid1 at the medial cortex and promotes the ring assembly in cooperation with F-actin.  相似文献   

20.
Vertebrates have three isoforms of class V myosin (Myo5), Myo5a, Myo5b, and Myo5c, which are involved in transport of multiple cargoes. It is well established that the motor functions of Myo5a and Myo5b are regulated by a tail inhibition mechanism. Here we found that the motor function of Myo5c was also inhibited by its globular tail domain (GTD), and this inhibition was abolished by high Ca2+, indicating that the tail inhibition mechanism is conserved in vertebrate Myo5. Interestingly, we found that Myo5a-GTD and Myo5c-GTD were not interchangeable in terms of inhibition of motor function, indicating isoform-specific interactions between the GTD and the head of Myo5. To identify the isoform-specific interactions, we produced a number of Myo5 chimeras by swapping the corresponding regions of Myo5a and Myo5c. We found that Myo5a-GTD, with its H11-H12 loop being substituted with that of Myo5c, was able to inhibit the ATPase activity of Myo5c and that Myo5a-GTD was able to inhibit the ATPase activity of Myo5c-S1 and Myo5c-HMM only when their IQ1 motif was substituted with that of Myo5a. Those results indicate that the H11-H12 loop in the GTD and the IQ1 motif in the head dictate the isoform-specific interactions between the GTD and head of Myo5. Because the IQ1 motif is wrapped by calmodulin, whose conformation is influenced by the sequence of the IQ1 motif, we proposed that the calmodulin bound to the IQ1 motif interacts with the H11-H12 loop of the GTD in the inhibited state of Myo5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号