共查询到20条相似文献,搜索用时 8 毫秒
1.
观音山自然保护区和佛坪自然保护区大熊猫种群的分布格局 总被引:2,自引:1,他引:1
2007年10月和2008年4月,对佛坪自然保护区和观音山自然保护区内大熊猫的活动痕迹进行了样线调查,研究了该区内大熊猫种群及其同域主要伴生动物的分布情况,并分析了影响大熊猫活动分布格局的环境因素.结果表明:观音山和佛坪自然保护区的大熊猫及同域主要伴生野生动物的分布格局基本一致,大熊猫在观音山自然保护区的活动痕迹密度、范围均小于佛坪自然保护区;研究区内2个大熊猫高密度等级的活动中心均分布在佛坪自然保护区内;观音山自然保护区内的大部分地区无大熊猫活动;羚牛、斑羚、野猪等大熊猫主要伴生动物在观音山自然保护区内的活动痕迹数量高于佛坪保护区;人类干扰可能对大熊猫种群活动的分布格局产生影响. 相似文献
2.
K. M. Purcell A. Hitch S. Martin P. L. Klerks P. L. Leberg 《Journal of evolutionary biology》2012,25(12):2623-2632
Saltwater intrusion into estuaries creates stressful conditions for nektonic species. Previous studies have shown that Gambusia affinis populations with exposure to saline environments develop genetic adaptations for increased survival during salinity stress. Here, we evaluate the genetic structure of G. affinis populations, previously shown to have adaptations for increased salinity tolerance, and determine the impact of selection and gene flow on structure of these populations. We found that gene flow was higher between populations experiencing different salinity regimes within an estuary than between similar marsh types in different estuaries, suggesting the development of saline‐tolerant phenotypes due to local adaptation. There was limited evidence of genetic structure along a salinity gradient, and only some of the genetic variation among sites was correlated with salinity. Our results suggest limited structure, combined with selection to saltwater intrusion, results in phenotypic divergence in spite of a lack of physical barriers to gene flow. 相似文献
3.
生态遗传学在生物多样性保护中的作用 总被引:4,自引:0,他引:4
本文就生态遗传学在生物多样性保护中的作用问题谈了几点看法。首先陈述了生态遗传学的性质,它是种群生态学和种群遗传学的结合,研究种群层次上正在进行着的进化;其次列举了生态遗传学的基本内容,说明生态遗传学是生物多样性研究和保护不可缺少的基本知识。最后举两个实例阐明生态遗传学在生物多样性保护中的具体应用。 相似文献
4.
Reinterpreting maximum entropy in ecology: a null hypothesis constrained by ecological mechanism 下载免费PDF全文
Simplified mechanistic models in ecology have been criticised for the fact that a good fit to data does not imply the mechanism is true: pattern does not equal process. In parallel, the maximum entropy principle (MaxEnt) has been applied in ecology to make predictions constrained by just a handful of state variables, like total abundance or species richness. But an outstanding question remains: what principle tells us which state variables to constrain? Here we attempt to solve both problems simultaneously, by translating a given set of mechanisms into the state variables to be used in MaxEnt, and then using this MaxEnt theory as a null model against which to compare mechanistic predictions. In particular, we identify the sufficient statistics needed to parametrise a given mechanistic model from data and use them as MaxEnt constraints. Our approach isolates exactly what mechanism is telling us over and above the state variables alone. 相似文献
5.
Comparative studies of codistributed taxa test the degree to which historical processes have shaped contemporary population structure. Discordant patterns of lineage divergence among taxa indicate that species differ in their response to common historical processes. The complex geologic landscape of the Isthmus of Central America provides an ideal setting to test the effects of vicariance and other biogeographic factors on population history. We compared divergence patterns between two codistributed Neotropical frogs ( Dendropsophus ebraccatus and Agalychnis callidryas ) that exhibit colour pattern polymorphisms among populations, and found significant differences between them in phenotypic and genetic divergence among populations. Colour pattern in D. ebraccatus did not vary with genetic or geographic distance, while colour pattern co-varied with patterns of gene flow in A. callidryas . In addition, we detected significant species differences in the phylogenetic history of populations, gene flow among them, and the extent to which historical diversification and recent gene flow have been restricted by five biogeographic barriers in Costa Rica and Panama. We inferred that alternate microevolutionary processes explain the unique patterns of diversification in each taxon. Our study underscores how differences in selective regimes and species-typical ecological and life-history traits maintain spatial patterns of diversification. 相似文献
6.
Yuichi Nakajima Yu Matsuki Chunlan Lian Miguel D. Fortes Wilfredo H. Uy Wilfredo L. Campos Masahiro Nakaoka Kazuo Nadaoka 《Molecular ecology》2014,23(24):6029-6044
Information on genetic diversity and differentiation of seagrass populations is essential for the conservation of coastal ecosystems. However, little is known about the seagrasses in the Indo‐West Pacific Ocean, where the world's highest diversity of seagrasses occurs. The influence of sea currents on these populations is also unknown. We estimated the genetic diversity and population genetic structure and identified reproductive features in Enhalus acoroides populations from the Yaeyama Islands, Hainan Island and the Philippines. The Philippines are situated at the centre of the E. acoroides range, Yaeyama and Hainan are peripheral populations, and the Yaeyama population is at the northern limit of the species range. The powerful Kuroshio Current flows from the Philippines to Yaeyama. Genetic analyses using nine microsatellite markers indicated that reproduction of E. acoroides is mostly sexual. Clonal diversity does not decrease in northern populations, although genetic diversity does. However, the genetic diversity of the Yaeyama populations is greater than that of the Hainan populations. Significant genetic differentiation among most populations was evident; however, the Yaeyama and north‐east Philippines populations were genetically similar, despite being separated by ~1100 km. An assignment test suggested that recruitment occurs from the north‐east Philippines to Yaeyama. The strong current in this region is probably responsible for the extant genetic diversity and recruitment patterns. 相似文献
7.
Theory predicts that structural genomic variants such as inversions can promote adaptive diversification and speciation. Despite increasing empirical evidence that adaptive divergence can be triggered by one or a few large inversions, the degree to which widespread genomic regions under divergent selection are associated with structural variants remains unclear. Here we test for an association between structural variants and genomic regions that underlie parallel host‐plant‐associated ecotype formation in Timema cristinae stick insects. Using mate‐pair resequencing of 20 new whole genomes we find that moderately sized structural variants such as inversions, deletions and duplications are widespread across the genome, being retained as standing variation within and among populations. Using 160 previously published, standard‐orientation whole genome sequences we find little to no evidence that the DNA sequences within inversions exhibit accentuated differentiation between ecotypes. In contrast, a formerly described large region of reduced recombination that harbours genes controlling colour‐pattern exhibits evidence for accentuated differentiation between ecotypes, which is consistent with differences in the frequency of colour‐pattern morphs between host‐associated ecotypes. Our results suggest that some types of structural variants (e.g., large inversions) are more likely to underlie adaptive divergence than others, and that structural variants are not required for subtle yet genome‐wide genetic differentiation with gene flow. 相似文献
8.
With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model‐based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long‐distance migration, EEMS’ model is more sensitive to short‐distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un‐intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un‐PC), a fast, model‐free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un‐PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape‐scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un‐PC, SpaceMix and EEMS. 相似文献
9.
Commonly observed patterns typically follow a few distinct families of probability distributions. Over one hundred years ago, Karl Pearson provided a systematic derivation and classification of the common continuous distributions. His approach was phenomenological: a differential equation that generated common distributions without any underlying conceptual basis for why common distributions have particular forms and what explains the familial relations. Pearson's system and its descendants remain the most popular systematic classification of probability distributions. Here, we unify the disparate forms of common distributions into a single system based on two meaningful and justifiable propositions. First, distributions follow maximum entropy subject to constraints, where maximum entropy is equivalent to minimum information. Second, different problems associate magnitude to information in different ways, an association we describe in terms of the relation between information invariance and measurement scale. Our framework relates the different continuous probability distributions through the variations in measurement scale that change each family of maximum entropy distributions into a distinct family. From our framework, future work in biology can consider the genesis of common patterns in a new and more general way. Particular biological processes set the relation between the information in observations and magnitude, the basis for information invariance, symmetry and measurement scale. The measurement scale, in turn, determines the most likely probability distributions and observed patterns associated with particular processes. This view presents a fundamentally derived alternative to the largely unproductive debates about neutrality in ecology and evolution. 相似文献
10.
11.
Highly mobile marine species in areas with no obvious geographic barriers are expected to show low levels of genetic differentiation. However, small‐scale variation in habitat may lead to resource polymorphisms and drive local differentiation by adaptive divergence. Using nuclear microsatellite genotyping at 20 loci, and mitochondrial control region sequencing, we investigated fine‐scale population structuring of inshore bottlenose dolphins (Tursiops aduncus) inhabiting a range of habitats in and around Moreton Bay, Australia. Bayesian structure analysis identified two genetic clusters within Moreton Bay, with evidence of admixture between them (FST = 0.05, P = 0.001). There was only weak isolation by distance but one cluster of dolphins was more likely to be found in shallow southern areas and the other in the deeper waters of the central northern bay. In further analysis removing admixed individuals, southern dolphins appeared genetically restricted with lower levels of variation (AR = 3.252, π = 0.003) and high mean relatedness (r = 0.239) between individuals. In contrast, northern dolphins were more diverse (AR = 4.850, π = 0.009) and were mixing with a group of dolphins outside the bay (microsatellite‐based STRUCTURE analysis), which appears to have historically been distinct from the bay dolphins (mtDNA ΦST = 0.272, P < 0.001). This study demonstrates the ability of genetic techniques to expose fine‐scale patterns of population structure and explore their origins and mechanisms. A complex variety of inter‐related factors including local habitat variation, differential resource use, social behaviour and learning, and anthropogenic disturbances are likely to have played a role in driving fine‐scale population structure among bottlenose dolphins in Moreton Bay. 相似文献
12.
Vincent Deblauwe Nicolas Barbier Pierre Couteron Olivier Lejeune Jan Bogaert 《Global Ecology and Biogeography》2008,17(6):715-723
Aim Vegetation exhibiting landscape‐scale regular spatial patterns has been reported for arid and semi‐arid areas world‐wide. Recent theories state that such structures are bound to low‐productivity environments and result from a self‐organization process. Our objective was to test this relationship between periodic pattern occurrence and environmental factors at a global scale and to parametrize a predictive distribution model. Location Arid and semi‐arid areas world‐wide. Methods We trained an empirical predictive model (Maxent) for the occurrence of periodic vegetation patterns, based on environmental predictors and known occurrences verified on Landsat satellite images. Results This model allowed us to discover previously unreported pattern locations, and to report the first ever examples of spotted patterns in natural systems. Relationships to the main environmental drivers are discussed. Main conclusions These results confirm that periodic patterned vegetations are ubiquitous at the interface between arid and semi‐arid regions. Self‐organized patterning appears therefore to be a biome‐scale response to environmental conditions, including soil and topography. The set of correlations between vegetation patterns and their environmental conditions presented in this study will need to be reproduced in future modelling attempts. 相似文献
13.
Numerous approaches have been developed to examine recent and historical gene flow between populations, but few studies have used empirical data sets to compare different approaches. Some methods are expected to perform better under particular scenarios, such as high or low gene flow, but this, too, has rarely been tested. In this issue of Molecular Ecology , Saenz-Agudelo et al . (2009 ) apply assignment tests and parentage analysis to microsatellite data from five geographically proximal (2–6 km) and one much more distant (1500 km) panda clownfish populations, showing that parentage analysis performed better in situations of high gene flow, while their assignment tests did better with low gene flow. This unusually complete data set is comprised of multiple exhaustively sampled populations, including nearly all adults and large numbers of juveniles, enabling the authors to ask questions that in many systems would be impossible to answer. Their results emphasize the importance of selecting the right analysis to use, based on the underlying model and how well its assumptions are met by the populations to be analysed. 相似文献
14.
Toward a selection theory of molecular evolution 总被引:5,自引:1,他引:5
Hahn MW 《Evolution; international journal of organic evolution》2008,62(2):255-265
15.
Abdul Shakoor Shan Li Fang Wang Tian Tian Yu Liang Keping Ma 《Journal of Plant Ecology》2019,12(2):255
AimsSpatial patterns of fungal populations are affected by plant distribution, abiotic factors, fungal dispersal ability and inter-species interactions. While several studies have addressed spatial patterns of some mycorrhizal, saprotrophic and pathogenic fungi, the method based on fruit-body surveys is not efficient and unreliable to study the spatial pattern of root-associated fungal species because most fungi in plant roots do not have sporocarps and cannot be identified based only on morphological traits. Our aims are (i) to determine the spatial pattern of common root-associated fungi; (ii) to evaluate whether the abundance and spatial pattern of root-associated fungi and categories of fungi, reflect their biotic and abiotic niche constraints. 相似文献
16.
There has been substantial interest of late in using population genetic methods to study sexual conflict, where an allele increases the fitness of one sex at some cost to the other (Mank, 2017). Population genomic scans for sexual conflict offer an important advance given the difficulties of identifying antagonistic alleles from more traditional methods, and could greatly increase our understanding of the extent and loci of sexual conflict. This is particularly true for studies in natural populations, for which obtaining accurate fitness measurements for each sex can be challenging. In this issue of Molecular Ecology, Bissegger, Laurentino, Roesti, and Berner (2019) present a cautionary tale about how to interpret these population genomic data. 相似文献
17.
Scott A. Pavey 《Molecular ecology resources》2015,15(4):685-687
Understanding the genetic structure of species is essential for conservation. It is only with this information that managers, academics, user groups and land‐use planners can understand the spatial scale of migration and local adaptation, source‐sink dynamics and effective population size. Such information is essential for a multitude of applications including delineating management units, balancing management priorities, discovering cryptic species and implementing captive breeding programmes. Species can range from locally adapted by hundreds of metres (Pavey et al. 2010 ) to complete species panmixia (Côté et al. 2013 ). Even more remarkable is that this essential information can be obtained without fully sequenced or annotated genomes, but from mere (putatively) nonfunctional variants. First with allozymes, then microsatellites and now SNPs, this neutral genetic variation carries a wealth of information about migration and drift. For many of us, it may be somewhat difficult to remember our understanding of species conservation before the widespread usage of these useful tools. However most species on earth have yet to give us that ‘peek under the curtain’. With the current diversity on earth estimated to be nearly 9 million species (Mora et al. 2011 ), we have a long way to go for a comprehensive meta‐phylogeographic understanding. A method presented in this issue by Campbell and colleagues (Campbell et al. 2015 ) is a tool that will accelerate the pace in this area. Genotyping‐in‐thousands (GT‐seq) leverages recent advancements in sequencing technology to save many hours and dollars over previous methods to generate this important neutral genetic information. 相似文献
18.
19.
J. E. Brommer I. K. Hanski J. Kekkonen R. A. Väisänen 《Journal of evolutionary biology》2014,27(4):737-747
Bergmann's rule predicts that individuals are larger in more poleward populations and that this size gradient has an adaptive basis. Hence, phenotypic divergence in size traits between populations (PST) is expected to exceed the level of divergence by drift alone (FST). We measured 16 skeletal traits, body mass and wing length in 409 male and 296 female house sparrows Passer domesticus sampled in 12 populations throughout Finland, where the species has its northernmost European distributional margin. Morphometric differentiation across populations (PST) was compared with differentiation in 13 microsatellites (FST). We find that twelve traits phenotypically diverged more than FST in both sexes, and an additional two traits diverged in males. The phenotypic divergence exceeded FST in several traits to such a degree that findings were robust also to strong between‐population environmental effects. Divergence was particularly strong in dimensions of the bill, making it a strong candidate for the study of adaptive molecular genetic divergence. Divergent traits increased in size in more northern populations. We conclude that house sparrows show evidence of an adaptive latitudinal size gradient consistent with Bergmann's rule on the modest spatial scale of ca. 600 km. 相似文献
20.
As the field of phylogeography has matured, it has become clear that analyses of one or a few genes may reveal more about the history of those genes than the populations and species that are the targets of study. To alleviate these concerns, the discipline has moved towards larger analyses of more individuals and more genes, although little attention has been paid to the qualitative or quantitative gains that such increases in scale and scope may yield. Here, we increase the number of individuals and markers by an order of magnitude over previously published work to comprehensively assess the phylogeographical history of a well‐studied declining species, the western pond turtle (Emys marmorata). We present a new analysis of 89 independent nuclear SNP markers and one mitochondrial gene sequence scored for rangewide sampling of >900 individuals, and compare these to smaller‐scale, rangewide genetic and morphological analyses. Our enlarged SNP data fundamentally revise our understanding of evolutionary history for this lineage. Our results indicate that the gains from greatly increasing both the number of markers and individuals are substantial and worth the effort, particularly for species of high conservation concern such as the pond turtle, where accurate assessments of population history are a prerequisite for effective management. 相似文献