首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Divergent reproductive interests of males and females often cause sexual conflict . Males of many species manipulate females by transferring seminal fluids that boost female short-term fecundity while decreasing their life expectancy and future reproductivity . The life history of ants, however, is expected to reduce sexual conflict; whereas most insect females show repeated phases of mating and reproduction, ant queens mate only during a short period early in life and undergo a lifelong commitment to their mates by storing sperm . Furthermore, sexual offspring can only be reared after a sterile worker force has been built up . Therefore, the males should also profit from a long female lifespan. In the ant Cardiocondyla obscurior, mating indeed has a positive effect on the lifetime reproductive success of queens. Queens that mated to either one fertile or one sterilized male lived considerably longer and started laying eggs earlier than virgin queens. Only queens that received viable sperm from fertile males showed increased fecundity. The lack of a trade-off between fecundity and longevity is unexpected, given evolutionary theories of aging . Our data instead reveal the existence of sexual cooperation in ants.  相似文献   

2.
Growing empirical evidence indicates that invertebrates become more resistant to a pathogen following initial exposure to a nonlethal dose; yet the generality, mechanisms, and adaptive value of such immune priming are still under debate. Because life‐history theory predicts that immune priming and large investment in immunity should be more frequent in long‐lived species, we here tested for immune priming and pathogen resistance in ant queens, which have extraordinarily long life span. We exposed virgin and mated queens of Lasius niger and Formica selysi to a low dose of the entomopathogenic fungus Beauveria bassiana, before challenging them with a high dose of the same pathogen. We found evidence for immune priming in naturally mated queens of L. niger. In contrast, we found no sign of priming in virgin queens of L. niger, nor in virgin or experimentally mated queens of F. selysi, which indicates that immune priming in ant queens varies according to mating status and mating conditions or species. In both ant species, mated queens showed higher pathogen resistance than virgin queens, which suggests that mating triggers an up‐regulation of the immune system. Overall, mated ant queens combine high reproductive output, very long life span, and elevated investment in immune defense. Hence, ant queens are able to invest heavily in both reproduction and maintenance, which can be explained by the fact that mature queens will be protected and nourished by their worker offspring.  相似文献   

3.
Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade‐offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade‐off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade‐offs between pre‐ and post‐copulatory traits.  相似文献   

4.
5.
The extraordinary lifelong partner commitment in social insects is expected to increase choosiness in both sexes and therefore to be associated with particularly low hybridization frequencies. Yet, more and more studies reveal that in many ant taxa hybrids are surprisingly common, with up to half of all female sexuals receiving sperm from allospecific males in extreme cases. In a few ant species, hybridization has led to the evolution of reproductively isolated new lineages with a bizarre system of genetic caste differentiation: colonies produce hybrid workers and pure-lineage female sexuals. This requires that colonies either contain multiple queens or that queens mate multiple times. In most other cases, hybridization appears to be an evolutionary dead end and fertile hybrid queens are rarely found. In such cases, haplodiploid sex determination appears to decrease the costs of mating with an allospecific male. As long as hybrid workers are viable, a cross-mated queen can partially rescue its fitness by producing males from unfertilized eggs. Mating with an allospecific partner may thus be an option for queens when conspecific mates are not available. The morphological similarity of most ant males, perhaps resulting from the lack of sexual conflict, may similarly contribute to the commoness of hybridization.  相似文献   

6.
In many animal systems, females exhibit a localized immune response to insemination that helps defend against sexually transmitted disease. However, this response may also kill sperm, reducing a male's reproductive potential. If males could suppress this response, they may be able to increase their sperm's representation in the female's reproductive tract, thereby increasing their fitness. Here we address the hypothesis that, under conditions of sperm competition, males interfere with female immunity. To test our hypothesis, we manipulated levels of female mating frequency (single vs. multiply mated) and seminal diversity (monandrous vs. polyandrous) in the cricket, Allonemobius socius and measured female immune response. As mating frequency increased, female hemocyte load decreased, indicating a general reproductive cost. As seminal diversity increased, phenoloxidase (PO) activity (in vitro measure of 'potential' macroparasitic defense) increased and encapsulation ability (in vivo measure of 'realized' macroparasitic defense) decreased in polyandrous females. These results suggest that males may manipulate female immunity by interrupting the pro-PO cascade, which begins with the activation of PO and ends in the encapsulation of invading foreign bodies. In other words, female immune function may serve as a battleground over which a sexual conflict is fought.  相似文献   

7.
The prophenoloxidase system (proPO-AS) is a primordial constituent of insect innate immunity. Its broad action spectrum, rapid response time, and cytotoxic by-products induced by phenoloxidase (PO) production contribute to the effective clearing of invading pathogens. However, such immune reactions may not be optimal for insect organs that evolved to have mutualistic interactions with non-self-cells. Ant queens are long-lived, but only mate early in adult life and store the sperm in a specialized organ, the spermatheca. They never re-mate so their life-time reproductive success is ultimately sperm-limited, which maintains strong selection for high sperm viability before and after storage. The proPO-AS may therefore be inappropriate for the selective clearing of sexually transmitted infections, as it might also target sperm cells that cannot be replaced.We measured PO enzymatic activity in the sperm storage organs of three ant species before and after mating. Our data show that no PO is produced in the sperm storage organs, relative to other somatic tissues as controls, and that these negative results are not due to non-detection in small volumes as non-immune-relevant catalase activity in single spermatheca fluid samples of both virgin and mated queens was significant. The lack of PO activity in sperm storage organs across three different ant species may represent an evolutionarily conserved adaptation to life-long sperm storage by ant queens. We expect that PO activity will be similarly suppressed in queen spermathecae of other eusocial Hymenoptera (bees and wasps) and, more generally, of insect females that store sperm for long periods.  相似文献   

8.
The reproductive interests of males and females are not always aligned, leading to sexual conflict over parental investment, rate of reproduction and mate choice. Traits that increase the genetic interests of one sex often occur at the expense of the other, selecting for counter-adaptations leading to antagonistic coevolution. Reproductive conflict is not limited to intraspecific interactions; interspecific hybridization can produce pronounced sexual conflict between males and females of different species, but it is unclear whether such conflict can drive sexually antagonistic coevolution between reproductively isolated genomes. We tested for hybridization-driven sexually antagonistic adaptations in queens and males of the socially hybridogenetic ‘J’ lineages of Pogonomyrmex harvester ants, whose mating system promotes hybridization in queens but selects against it in males. We conducted no-choice mating assays to compare patterns of mating behaviour and sperm transfer between inter- and intra-lineage pairings. There was no evidence for mate discrimination on the basis of pair type, and the total quantity of sperm transferred did not differ between intra- and inter-lineage pairs; however, further dissection of the sperm transfer process into distinct mechanistic components revealed significant, and opposing, cryptic manipulation of copulatory investment by both sexes. Males of both lineages increased their rate of sperm transfer to high-fitness intra-lineage mates, with a stronger response in the rarer lineage for whom mating mistakes are the most likely. By contrast, the total duration of copulation for intra-lineage mating pairs was significantly shorter than for inter-lineage crosses, suggesting that queens respond to prevent excessive sperm loading by prematurely terminating copulation. These findings demonstrate that sexual conflict can lead to antagonistic coevolution in both intra-genomic and inter-genomic contexts. Indeed, the resolution of sexual conflict may be a key determinant of the long-term evolutionary potential of host-dependent reproductive strategies, counteracting the inherent instabilities arising from such systems.  相似文献   

9.
Here we present evidence that the male mating products (sperm and gland products) reduce survival during hibernation of queens of the bumblebee B. terrestris. Most remarkably, the inseminated queens are significantly more likely to have melanized spermathecae than their virgin sisters. Although we could not detect a direct relationship between these two findings they are quite remarkable since B. terrestris is a monandrous and comparably long-lived insect where sexual conflict is unlikely to evolve. The reduced survival can probably be attributed to a general cost of maintaining the sperm, whereas the presence of melanized spermathecae in the inseminated queens may indicate a pathogen transferred during mating or genetic incompatibilities between males and queens. Received 30 December 2007; revised 27 April 2008; accepted 1 May 2008.  相似文献   

10.
Multiple mating (i.e., polyandry) by queens in social Hymenoptera is expected to weaken social cohesion since it lowers within-colony relatedness, and hence, indirect fitness benefits from kin selection. Yet, there are many species where queens mate multiply. Several hypotheses have been put forward to explain the evolution and maintenance of polyandry. Here,we investigated the ‘sperm limitation’ and the ‘diploid male load’ hypotheses in the ant Cataglyphis cursor. Genetic analyses of mother-offspring combinations showed that queens mate with up to 8 males, with an effective mating frequency of 3.79. Significant paternity skew (unequal contribution of the fathers) was detected in 1 out of 5 colonies. The amount of sperm stored in the spermatheca was not correlated with the queen mating frequency, and males carry on average enough sperm in their seminal vesicles to fill one queen’s spermatheca. Analyses of the nuclear DNA-content of males also revealed that all were haploid. These results suggest that the ‘sperm limitation’ and the ‘diploid male load’ hypotheses are unlikely to account for the queen mating frequency reported in this ant. In light of our results and the life-history traits of C. cursor, we discuss alternative hypotheses to account for the adaptive significance of multiple mating by queens in this species. Received 13 August 2008; revised 19 November 2008; accepted 21 November 2008.  相似文献   

11.
In many sexually reproducing species, females are sperm limited and actively mate more than once which can lead to sperm competition between males. However, the costs and benefits of multiple matings may differ for males and females leading to different optimal mating frequencies and consequent sexual conflict. Under these circumstances, male traits that reduce females' re‐mating rates are likely to evolve. However, the same traits can also reduce, directly or indirectly, female survival and/or manipulate female fecundity. Evidence of this sexual conflict is common across several taxa. Here, we examine the evidence for this form of conflict in the free‐living nematodes of the Caenorhabditis genus. Members of this group are extensively used to describe developmental and physiological processes. Despite this, we understand little about the evolution of selfing, maintenance of males and sexual conflict in these species, particularly those with gonochoristic mating strategies. In this study, we demonstrate experimentally sexual conflict in the gonochoristic of C. remanei cultured under laboratory conditions. In our first experiment, we found that female fecundity increased with the number of males present which suggests that females' reproduction may be sperm limited. However, increasing the number of males present also reduced female survival. A second experiment ruled out the alternative explanation of density‐dependent reduction in female survival when more males were present as increasing female density correspondingly did not affect female survival. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 362–369.  相似文献   

12.
There is considerable variation in structures known to function in the transfer and storage of sperm in female decapod crustaceans. The thelycum is a secondary sexual character that forms from the posterior thoracic sterna of female shrimps (especially penaeoids and sergestoids). Females in the caridean shrimp family Processidae have a thelycum‐like structure which rarely occurs in other caridean females. We tested the hypothesis that the processid thelycum serves as a spermatheca for either short‐term attachment or long‐term sperm storage. When inseminated females of the processid Ambidexter symmetricus were isolated after mating, newly spawned and then incubated embryos hatched, but in the continued absence of a male, females were unable to fertilize a subsequent spawn. Our observations on A. symmetricus show that sperm were not retained after female spawning, and thus the thelycum is not used for long‐term sperm storage as in many penaeoids. In A. symmetricus, the thelycum may serve as an external median spermatheca (seminal receptacle) for temporary attachment and storage of a sperm mass during the 2–3 h interval between mating and spawning. Observations on mating behavior support the hypothesis of a pure‐search (promiscuous) mating system in A. symmetricus, with males showing little interest before, and copulating with females only after, the female parturial molt. Mating encounters were short (<2 min). This mating system is like that of other caridean shrimps with populations structured similarly to those in A. symmetricus: a relatively high density of mobile individuals and sexual dimorphism in body size (reproductive females larger than males) but not in cheliped weaponry (similar in males and females).  相似文献   

13.
Individuals that invest more in immunity may not be able to invest as much in o\ther life history traits. The overall effects on fitness depend on the balance of investment in life history traits and unnecessary investment in immunity may lower fitness. Adult mealworm beetles (Tenebrio molitor L.) modulate their investment according to the perceived risk of infection as larvae; the amount of investment can be assessed by body coloration. This prophylactic investment in immunity can be used to assess the costs of investment when no immune challenge is present. Whether investment in immunity is traded off against sperm competitive ability, another important fitness trait in insects, was investigated. Males that had invested more in immunity (dark males) competed against males that had invested less (light males) for fertilization of offspring. Dark males did lose sperm precedence over time, whereas light males did not. However, this decrease in sperm offensive ability may not result in decreased fitness for darker males under normal female mating frequencies; the decrease in offspring did not occur for 1 week, but females that have constant access to males mate once a day, which would negate any long‐term effects of male mating order. Thus, prophylactic investment in immunity does not produce immediate reductions in a male's ability to gain fertilizations. The costs to immune investment may be born by other fitness traits in T. molitor.  相似文献   

14.
Sexually antagonistic coevolution is predicted to lead to the divergence of male and female genotypes related to the effects of substances transferred by males at mating on female physiology. The outcome of mating should thus depend on the specific combination of mating genotypes. Although mating has been shown to influence female immunity in diverse insect taxa, a male–female genotype-by-genotype effect on female immunity post mating remains largely unexplored. Here, we investigate the effects of mating on female decorated cricket baseline immunity and the potential for a male-genotype-by-female-genotype interaction affecting this response. Females from three distinct genotypic backgrounds were left unmated or singly mated in a fully reciprocal design to males from the same three genotypic backgrounds. Hemocytes and hemocyte microaggregations were quantified for female cellular immunity, and phenoloxidase, involved in melanization, and antibacterial activity for humoral immunity. In this system, female cellular immunity was more reactive to mating, and mating effects were genotype-dependent. Specifically, for hemocytes, a genotype-by-mating status interaction mediated the effect of mating per se, and a significant male–female genotype-by-genotype interaction determined hemocyte depletion post mating. Microaggregations were influenced by the female’s genotype or that of her mate. Female humoral immune measures were unaffected, indicating that the propensity for post-mating effects on females is dependent on the component of baseline immunity. The genotype-by-genotype effect on hemocytes supports a role of sexual conflict in post-mating immune suppression, suggesting divergence of male genotypes with respect to modification of female post-mating immunity, and divergence of female genotypes in resistance to these effects.Subject terms: Non-model organisms, Sexual selection, Behavioural ecology, Evolutionary ecology, Genetic interaction  相似文献   

15.
16.
Multiple functional queens in a colony (polygyny) and multiple mating by queens (polyandry) in social insects challenge kin selection, because they dilute inclusive fitness benefits from helping. Colonies of the ant Plagiolepis pygmaea brash contain several hundreds of multiply mated queens. Yet, within‐colony relatedness remains unexpectedly high. This stems from low male dispersal, extensive mating among relatives and adoption of young queens in the natal colony. We investigated whether inbreeding results from workers expelling foreign males, and/or from preferential mating between related partners. Our data show that workers actively repel unrelated males entering their colony, and that queens preferentially mate with related males. These results are consistent with inclusive fitness being a driving force for inbreeding: by preventing outbreeding, workers reduce erosion of relatedness within colonies due to polygyny and polyandry. That virgin queens mate preferentially with related males could result from a long history of inbreeding, which is expected to reduce depression in species with regular sibmating.  相似文献   

17.
Immune system maintenance and upregulation is costly. Sexual selection intensity, which increases male investment into reproductive traits, is expected to create trade-offs with immune function. We assayed phenoloxidase (PO) and lytic activity of individuals from populations of the Indian meal moth, Plodia interpunctella, which had been evolving under different intensities of sexual selection. We found significant divergence among populations, with males from female-biased populations having lower PO activity than males from balanced sex ratio or male-biased populations. There was no divergence in anti-bacterial lytic activity. Our data suggest that it is the increased male mating demands in female-biased populations that trades-off against immunity, and not the increased investment in sperm transfer per mating that characterizes male-biased populations.  相似文献   

18.
Hanna Kokko  Katja U. Heubel 《Oikos》2011,120(5):641-656
For almost five decades three threads have coexisted in the evolutionary and ecological literature, with their links only recently becoming visible and some of them still not properly addressed. These are the levels of selection debate, the metaphor of the tragedy of the commons, and the evolutionary study of sexual conflict. We analyze the eco‐evolutionary dynamics of a curious system where an asexual all‐female fish species (the Amazon molly Poecilia formosa) requires sperm from other species as a developmental trigger, without utilizing the genes from sperm. The dynamics of such a system bear strong resemblance to host–parasite dynamics, and populations of the sexual ‘host’ species persist much better if males avoid mating with Amazons. However, such avoidance may compromise their current mating success, and if this is the case, prudent mating becomes an altruistic trait that helps to keep an accumulating problem of a competing species at bay, and Amazon‐free space can be seen to form a common good that a population should maintain for future generations. A model shows that the evolution of altruistic mating restraint is possible but selection for short‐term gains means that it will remain less than perfect. This helps to explain why the anomalous gynogenetic system can persist, but it also raises questions about what kinds of traits can be classified as adaptations when optimization is not perfect and traits evolve to achieve short‐term goals better than long‐term performance. Contributing to the levels of selection debate, we encourage researchers to study the implications of the different timescales involved in the eco‐evolutionary process.  相似文献   

19.
1. In haplodiploid social insects where males are haploid and females are diploid, inbreeding depression is expressed as the production of diploid males when homozygosity at the sex‐determining locus results in the production of diploid individuals with a male phenotype. Diploid males are often assumed to have reduced fitness compared with their haploid brothers. 2. While studying the reproductive biology of a leaf‐cutting ant, Atta sexdens, in Gamboa, Republic of Panama, we detected the presence of a larger male morph. Using microsatellite markers we were able to confirm that the large male morph was diploid in 87% of cases. 3. We infer that the Gamboa population of A. sexdens experiences inbreeding depression because diploid males were found in three out of five mature colonies. However, their frequencies were relatively low because queens were multiply mated and our estimates suggest that many diploid male larvae may not survive to adulthood. 4. We measured two traits potentially linked to male reproductive success: sperm length and sperm number, and showed that diploid males produced fewer but longer sperm. These results provide indirect evidence that diploid male reproductive success would be reduced compared with haploid males if they were able to copulate. 5. We conclude that diploid male production is likely to affect the fitness of A. sexdens queens with a matched mating, as these males are produced at the cost of workers and, if the colony survives to reach mature size, also gynes.  相似文献   

20.
Schrempf A  Heinze J 《PloS one》2008,3(7):e2592

Background

According to sexual conflict theory, males can increase their own fitness by transferring substances during copulation that increase the short-term fecundity of their mating partners at the cost of the future life expectancy and re-mating capability of the latter. In contrast, sexual cooperation is expected in social insects. Mating indeed positively affects life span and fecundity of young queens of the male-polymorphic ant Cardiocondyla obscurior, even though males neither provide nuptial gifts nor any other care but leave their mates immediately after copulation and die shortly thereafter.

Principal Findings

Here, we show that mating with winged disperser males has a significantly stronger impact on life span and reproductive success of young queens of C. obscurior than mating with wingless fighter males.

Conclusions

Winged males are reared mostly under stressful environmental conditions, which force young queens to disperse and found their own societies independently. In contrast, queens that mate with wingless males under favourable conditions usually start reproducing in the safety of the established maternal nest. Our study suggests that males of C. obscurior have evolved mechanisms to posthumously assist young queens during colony founding under adverse ecological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号