首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Chloramphenicol production was studied in cultures of Streptomyces venezuelae growing in a simple buffered medium with ammonia as the nitrogen source and glucose, lactose, or a glucose-lactose mixture as the sole source of carbon. With each carbon source the antibiotic was formed during growth. In the glucose-lactose medium, the production pattern was biphasic; a marked decrease in the rate of synthesis was associated with depletion of glucose from the medium and a corresponding diauxie pause in growth. Cells of S. venezuelae contained an inducible beta-galactosidase. Induction by lactose was suppressed by glucose. Measurement of the concentration of intracellular adenosine 3',5'-cyclic monophosphate during growth of cultures with glucose or a glucose-lactose mixture as the source of carbon showed no appreciable changes coinciding with depletion of glucose or the onset of chloramphenicol biosynthesis. It is concluded that the cyclic nucleotide does not mediate selective nutrient utilization or control antibiotic biosynthesis in this organism.  相似文献   

4.
The intracellular distribution of phosphodiesterase [EC 3.1.4.17] induced by cyclic adenosine 3',5'-monophosphate (cAMP) in Dictyostelium discoideum was studied. When cAMP-treated cells were homogenized and fractionated according to the method of de Duve et al. ((1955) Biochem, J. 60, 604), the specific activity of phosphodiesterase was highest in the light mitochondrial fraction. Peaks of specific activities of alkaline phosphatase (marker enzyme of membrane) and catalase (marker enzyme of peroxisomes) also appeared in the same fraction as phosphodiesterase. However, after centrifugation of the light mitochondrial fraction in a sucrose density gradient, the activity of phosphodiesterase was clearly separated with that of catalase (density 1.19 g/ml) and showed three peaks at lower density (1.10, 1.13, 1.17 g/ml) with good reproducibility. Some parts (1.13, 1.17 g/ml) of the activity in the gradient overlapped with alkaline phosphatase activity, but in the density fraction of 1.10 g/ml the activity of alkaline phosphatase was hardly detectable. When the light mitochondrial fraction was treated with Emulgen 108, or sonicated, phosphodiesterase was more easily solubilized than alkaline phosphatase and catalase, and was found in supernate after centrifugation at 20,000 X g for 30 min. In order to distinguish the locations of the three enzymes, the supernatant of the light mitochondrial fraction treated with Emulgen 108 was subjected to charge shift electrophoresis. The electrophoretic mobilities of phosphodiesterase and catalase were unaffected by ionic detergent. However, alkaline phosphatase shifted towards the anode in the presence of anionic detergent (sodium deoxycholate), and shifted towards the cathode in cationic detergent (cetyltrimethylammonium bromide), relative to nonionic detergent (Emulgen 108) alone. Thus, some part of the phosphodiesterase induced by cAMP may be associated with the plasma membrane, but the remainder is localized in some kind of intracellular particle of lower density. Moreover, the association with the membrane or particle is more easily dissociated than that of alkaline phosphatase, and the liberated phosphodiesterase is rather hydrophilic.  相似文献   

5.
6.
M Takahashi  B Blazy  A Baudras 《Biochemistry》1980,19(22):5124-5130
The binding of adenosine cyclic 3',5'-monophosphate (cAMP) and guanosine cyclic 3',5'-monophosphate (cGMP) to the adenosine cyclic 3',5'-monophosphate receptor protein (CRP) from Escherichia coli was investigated by equilibrium dialysis at pH 8.0 and 20 degrees C at different ionic strengths (0.05--0.60 M). Both cAMP and cGMP bind to CRP with a negative cooperativity that is progressively changed to positive as the ionic strength is increased. The binding data were analyzed with an interactive model for two identical sites and site/site interactions with the interaction free energy--RT ln alpha, and the intrinsic binding constant K and cooperativity parameter alpha were computed. Double-label experiments showed that cGMP is strictly competitive with cAMP, and its binding parameters K and alpha are not very different from that for cAMP. Since two binding sites exist for each of the cyclic nucleotides in dimeric CRP and no change in the quaternary structure of the protein is observed on binding the ligands, it is proposed that the cooperativity originates in ligand/ligand interactions. When bound to double-stranded deoxyribonucleic acid (dsDNA), CRP binds cAMP more efficiently, and the cooperativity is positive even in conditions of low ionic strength where it is negative for the free protein. By contrast, cGMP binding properties remained unperturbed in dsDNA-bound CRP. Neither the intrinsic binding constant K nor the cooperativity parameter alpha was found to be very sensitive to changes of pH between 6.0 and 8.0 at 0.2 M ionic strength and 20 degrees C. For these conditions, the intrinsic free energy and entropy of binding of cAMP are delta H degree = -1.7 kcal . mol-1 and delta S degree = 15.6 eu, respectively.  相似文献   

7.
8.
The cAMP-signaling pathway is composed of multiple components ranging from receptors, G proteins, and adenylyl cyclase to protein kinase A. A common view of the molecular interaction between them is that these molecules are disseminated on the plasma lipid membrane and random collide with each other to transmit signals. A limitation to this idea, however, is that a signaling cascade involving multiple components may not occur rapidly. Caveolae and their principal component, caveolin, have been implicated in transmembrane signaling, particularly in G protein-coupled signaling. We examined whether caveolin interacts with adenylyl cyclase, the membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. When overexpressed in insect cells, types III, IV, and V adenylyl cyclase were localized in caveolin-enriched membrane fractions. Caveolin was coimmunoprecipitated with adenylyl cyclase in tissue homogenates and copurified with a polyhistidine-tagged form of adenylyl cyclase by Ninitrilotriacetic acid resin chromatography in insect cells, suggesting the colocalization of adenylyl cyclase and caveolin in the same microdomain. Further, the regulatory subunit of protein kinase A (RIIalpha, but not RIalpha) was also enriched in the same fraction as caveolin. Gsalpha was found in both caveolin-enriched and non-caveolin-enriched membrane fractions. Our data suggest that the cAMP-signaling cascade occurs within a restricted microdomain of the plasma membrane in a highly organized manner.  相似文献   

9.
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) were identified in the vegative mycelium of Streptomyces griseus. Adenosine 5'-diphosphate 3'-diphosphate (ppApp) and adenosine 5'-triphosphate 3'-diphosphate (pppApp) were not present but several other phosphorus-containing compounds which may have been inorganic polyphosphates were detected. During exponential growth of S. griseus the concentrations of ppGpp and pppGpp were several times higher than in the stationary stage. They fell sharply when exponential growth ended and then remained at an almost constant basal level. For the tetraphosphate the maximum concentration was about 50, and for the basal level about 10, pmol per millilitre of a culture with an optical density of 1.0. Production of streptomycin started several hours after exponential growth had ended and the concentrations of ppGpp and pppGpp had fallen. Streptomycin synthesis was delayed if the cells were resuspended just before production started in fresh medium lacking phosphate, but it was not delayed by glucose starvation. Both cultures, as well as cultures transferred to nitrogen-free medium, showed an immediate increase in ppGpp content to about four-fold the basal level. The results suggest that the guanosine polyphosphates do not directly control initiation of streptomycin production in S. griseus. Twelve additional species of Streptomyces examined all contained ppGpp and pppGpp.  相似文献   

10.
11.
12.
13.
14.
15.
Incubation of purified cyclic guanosine 3':5'-monophospate-dependent protein kinase with [gamma-32P]ATP and Mg2+ led to formation of one 32P-labeled protein, Mr = 75,000, which corresponded to the single protein band detected after polyacrylamide gel electrophoresis in sodium dodecyl sulfate. When electrophoresis was performed without detergent, the labeled protein coincided with the position of cGMP-dependent protein kinase activity. Phosphorylation was enhanced severalfold by either histone or cAMP and was inhibited by the addition of cGMP. Low concentrations of cGMP blocked the stimulatory effects of cAMP or histone (or both). Since neither cAMP-dependent protein kinase nor cGMP-dependent phosphoprotein phosphatase activities were detected in the purified enzyme, we concluded that the cGMP-dependent protein kinase is a substrate for its own phosphotransferase activity and that other protein substrates (histone) and cyclic nucleotides modulate the process of self-phosphorylation.  相似文献   

16.
17.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP.  相似文献   

18.
During temperature-induced transition of the dimorphic pathogenic fungus Histoplasma capsulatum from the single yeast cell form to the multicellular mycelial form, there was an increase in intracellular cyclic adenosine 3',5'-monophosphate (cAMP) levels as well as a striking accumulation of cAMP in the medium. cAMP levels also changed during the reverse mycelium-to-yeast transition.  相似文献   

19.
20.
Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate phosphodiesterase activity, 60% of which is soluble. This activity shows characteristic low Km (1 μm) for cyclic AMP and does not hydrolyze cyclic guanosine 3′:5′-monophosphate. It requires Mn2+ ions for maximal activity and is not inhibited by methylxanthines or activated by imidazole. Both enzymatic activities vary during the aerobic life cycle of the fungus. The spores have the highest levels of adenylate cyclase and cAMP phosphodiesterase, which decrease during the aerobic development. At the round cell stage, phosphodiesterase activity reaches 40% of the activity of the spores and varies only slightly thereafter. At this stage the specific activity of adenylate cyclase is 25% of the activity of ungerminated spores, and from this stage on, the activity increases up to the end of the logarithmic phase. Intracellular levels of cyclic AMP have been measured during aerobic germination. The variations of the intracellular level are tentatively explained by unequal variations in the activities of adenylate cyclase and cyclic AMP phosphodiesterase. A continuous increase of the extracellular cyclic AMP level during aerobic development has also been found, which cannot be accounted for solely by variations in the cyclase and diesterase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号