首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a previous communication (Saigo, K., Millstein, L. and Thomas, C.A., Jr. (1981) Cold Spring Harbor Symp. Quant. Biol. 45, 815–827), the overall structure of histone genes of Schneider line 2 cells was shown to extensively differ from that of Oregon-R embryo from which the cell line was established, and it was speculated that the histone genes might be reshuffled extensively during either the periods of the establishment, or maintenance of cell lines, or both. To establish the validity of this notion the structure of histone genes was examined in Drosophila melanogaster cultured cells. The overall organization of histone gene clusters was found to be stably maintained in both the periods for the establishment and maintenance of cultured cells, indicating that the previous assumption is inadequate. Instead of an extensive rearrangement, minor structural changes were found to occasionally occur probably by simple base substitutions and/or, deletion or insertion of very short DNA pieces. It was also shown that the extensive variation in structures of histone genes in cultured cells such as Schneider line 2 are attributable to polymorphism on the level of individual flies.  相似文献   

2.
HMG-14 and HMG-17 form a family of ubiquitous non-histone chromosomal proteins and have been reported to bind preferentially to regions of active chromatin structure. Our previous studies demonstrated that the chicken HMG-17 gene is dispensable for normal growth of the DT40 chicken lymphoid cell line. Here it is shown that the major chicken HMG-14 gene,HMG-14a, is also dispensable and, moreover, that DT40-derived cells lacking both HMG-17 and HMG-14a proteins show no obvious change in phenotype with respect to the parental DT40 cells. Furthermore, no compensatory changes in HMG-14b or histone protein levels were observed in cells lacking both HMG-14a and HMG-17, nor were any alterations detected in such hallmarks of chromatin structure as DNaseI-hypersensitive sites or micrococcal nuclease digestion patterns. It is concluded that the HMG-14a and HMG-17 proteins are not required for normal growth of avian cell linesin vitro, nor for the maintenance of DNaseI-hypersensitive sites in chromatin.  相似文献   

3.
4.
In this study, histone H4 was shown to be extensively hyperacetylated in mid-spermatids of the rat during the time period when the entire complement of histones is replaced by basic spermatidal transition proteins. The degree of hyperacetylation of histone H4 was minimal in pachytene spermatocytes. Therefore, the hyperacetylation appears to be directly involved in the histone replacement process late in spermatogenesis in mid-spermatids. In order to investigate further the possible effects of histone H4 hyperacetylation and the other dramatic changes in the nuclear proteins on the structure of chromatin in germinal cells, we examined the thermal denaturation profiles of chromatin from various purified germinal cell types. Our analyses revealed that chromatins from pachytene spermatocytes and early spermatids have similar thermal denaturation profiles, with their major thermal transitions slightly lower than those for rat liver. However, the major thermal transitions for chromatin from mid-spermatids are much lower than those from pachytene spermatocytes and early-spermatids. We propose that the greatly lowered thermal stability of mid-spermatid chromatin represents a dramatic relaxation or decondensation of the chromatin in this cell type in preparation for the replacement of histone by the basic spermatidal transition proteins and that the decondensation is due in large part to the extensive histones hyperacetylation which occurs in these cells.  相似文献   

5.
Addition of H1 histone or polylysine (10 μg/ml) to cultured Friend erythroleukemia cells or to two mouse lymphoma cell lines (el-4 and S-49) increased levels of cell division in these cultures. There is a stimulation of incorporation of labeled thymidine into DNA in cultures containing H1 histone and polylysine. DNA fiber autoradiographic experiments revealed that replicon size is decreased in the cells cultured with H1 histone and polylysine at later periods of culture.  相似文献   

6.
A histone mixture (H1, H2A, H2B, H3, and H4) derived from calf thymus stimulated IgM production by human-human hybridoma HB4C5 cells. On the contrary, the histone mixture did not increase IgM production by the human Burkitt's lymphoma cell line NAT-30, IgG production by the human B lymphoblastoid cell line HMy-2, and IgE production by the human myeloma cell line U266. The immunoglobulin production-stimulating activity of the histone mixture was inactivated by trypsin or chymotrypsin digestion. In addition, confocal laser microscopic analysis had shown that HB4C5 cells incorporated a lot of histone but other cell lines did not incorporate it as much. These facts strongly suggest that histone acts as an immunoglobulin production-stimulating factor (IPSF) after internalization into the human B cell lines and the native structure of histone is required for the IPSF activity.  相似文献   

7.
8.
9.
The DNA of eukaryotes is wrapped around nucleosomes and packaged into chromatin. Covalent modifications of the histone proteins that comprise the nucleosome alter chromatin structure and have major effects on gene expression. Methylation of lysine 4 of histone H3 by COMPASS is required for silencing of genes located near chromosome telomeres and within the rDNA (Krogan, N. J, Dover, J., Khorrami, S., Greenblatt, J. F., Schneider, J., Johnston, M., and Shilatifard, A. (2002) J. Biol. Chem. 277, 10753-10755; Briggs, S. D., Bryk, M., Strahl, B. D., Cheung, W. L., Davie, J. K., Dent, S. Y., Winston, F., and Allis, C. D. (2001) Genes. Dev. 15, 3286-3295). To learn about the mechanism of histone methylation, we surveyed the genome of the yeast Saccharomyces cerevisiae for genes necessary for this process. By analyzing approximately 4800 mutant strains, each deleted for a different non-essential gene, we discovered that the ubiquitin-conjugating enzyme Rad6 is required for methylation of lysine 4 of histone H3. Ubiquitination of histone H2B on lysine 123 is the signal for the methylation of histone H3, which leads to silencing of genes located near telomeres.  相似文献   

10.
11.
取长江江豚(Neophocaena phocaenoids asiaeorientalis)产后胎盘脐静脉,经组织块培养,差异贴壁法纯化,构建长江江豚的原代细胞系;经外源癌基因SV40 T antigens(猿猴病毒T抗原)转染构建稳定脐带细胞系,并对长江江豚的永生化后的成纤维细胞的细胞形态、转染效率、生长曲线和活率等...  相似文献   

12.
13.
14.
Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.  相似文献   

15.
The underlying mechanism for the establishment and maintenance of differential DNA methylation in imprinted genes is largely unknown. Previous studies using Dnmt1 knock-out embryonic stem (ES) cells demonstrated that, although re-expression of DNMT1 restored DNA methylation in the non-imprinted regions, the methylation patterns of imprinted genes could be restored only through germ line passage. Knock-out of Uhrf1, an accessory factor essential for DNMT1-mediated DNA methylation, in mouse ES cells also led to impaired global DNA methylation and loss of genomic imprinting. Here, we demonstrate that, although re-expression of UHRF1 in Uhrf1−/− ES cells restored DNA methylation for the bulk genome but not for most of the imprinted genes, it did rescue DNA methylation for the imprinted H19, Nnat, and Dlk1 genes. Analysis of histone modifications at the differential methylated regions of the imprinted genes by ChIP assays revealed that for the imprinted genes whose DNA methylation could be restored upon re-expression of UHRF1, the active histone markers (especially H3K4me3) were maintained at considerably low levels, and low levels were maintained even in Uhrf1−/− ES cells. In contrast, for the imprinted genes whose DNA methylation could not be restored upon UHRF1 re-expression, the active histone markers (especially H3K4me3) were relatively high and became even higher in Uhrf1−/− ES cells. Our study thus supports a role for histone modifications in determining the establishment of imprinting-related DNA methylation and demonstrates that mouse ES cells can be a valuable model for mechanistic study of the establishment and maintenance of differential DNA methylation in imprinted genes.  相似文献   

16.
Linker histone H1 plays an important role in chromatin folding in vitro. To study the role of H1 in vivo, mouse embryonic stem cells null for three H1 genes were derived and were found to have 50% of the normal level of H1. H1 depletion caused dramatic chromatin structure changes, including decreased global nucleosome spacing, reduced local chromatin compaction, and decreases in certain core histone modifications. Surprisingly, however, microarray analysis revealed that expression of only a small number of genes is affected. Many of the affected genes are imprinted or are on the X chromosome and are therefore normally regulated by DNA methylation. Although global DNA methylation is not changed, methylation of specific CpGs within the regulatory regions of some of the H1 regulated genes is reduced. These results indicate that linker histones can participate in epigenetic regulation of gene expression by contributing to the maintenance or establishment of specific DNA methylation patterns.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号