首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cells of an in vitro culture system are not the same as for an in vivo system, metabolically and physiologically; ineffective utilization of nutrients occurs by cells in vitro. Therefore, a simpler approach is needed to examine closely and overcome differences between in vivo and in vitro cells.Recognizing the ineffectiveness of nutrient utilization in vitro, we have constructed, a balanced, fortified high-density medium based on RPMI 1640 medium previously optimized for relatively low-density cell culture. The high-density medium was used to cultivate a hybridoma line in a batch spinner flask culture. In this fortified medium, a hybridoma cell line 2c3.1 was cultivated to near 1 x 10(7) cells/mL in batch suspension culture. During the culture, glucose, glutamine, and 10 essential amino acids of concentrations five times richer than normal in the medium were almost thoroughly consumed. Combined analysis of these consumption profiles reveals that the balanced, fortified nutrient supply contributes much to cellular activity to overcome the limitations of in vitro cellular growth. Intermediate metabolites, such as ammonium ion and lactic acid, were produced over concentrations reported until now to be inhibitory. This observation suggests that the major conclusive factor against cellular growth over the critical cell density is not so-called inhibitory metabolites. As a result of the high-density culture, 5-8 times higher production of a monoclonal antibody for hepatitis B surface antigen (anti-HBs) was obtained.Active cellular consumption of all the essential nutrients and the corresponding production of MAb strongly support the potential of our approach to overcome the growth limitation of cells in vitro and to obtain high-density hybridoma cell culture.  相似文献   

2.
A perfusion culture system was developed to investigate the oxygenation of high-density hybridoma cell cultures. The culture system was composed of a stirred-tank bioreactor and an external microfiltration hollow fiber cartridge for medium perfusion. Cell growth and antibody production were examined with large bubble ( approximately 5 mm in diameter), micron-sized bubble ( approximately 80 mum in diameter), and silicone tubing oxygenation techniques. Comparable cell growth and monoclonal antibody (MAb) production were found for both the micron-sized and large oxygenation methods, provided that large bubbles were enriched with pure oxygen. Relatively low cell growth and MAb production were attained with the bubble-free silicone tubing oxygenation. It is concluded that direct bubble oxygenation can be applied successfully in high-density animal cell cultures, provided that the culture medium is supplemented with Pluronic F-68. The accumulation of ammonia in the culture medium rather than oxygen limitation was found to be one of the possible problems that eventually inhibited cell growth. This and the fouling of the filtration cartridge during long-term cultivation were found to be more problematic than simple bubble oxygenation of high-density cell culture. The micron-sized bubble oxygenation method is highly recommended for high-density animal cell cultures, provided that Pluronic F-68 is supplemented into the culture medium. (c) 1993 John Wiley & Sons, Inc.  相似文献   

3.
To determine the effect of hyperosmotic stress on the monoclonal antibody (MAb) production by calcium-alginate-immobilized S3H5/gamma2bA2 hybridoma cells, the osmolalities of medium in the MAb production stage were varied through the addition of NaCI. The specific MAb productivity (q(MAb)) of immobilized cells exposed to abrupt hyperosmotic stress (398 mOsm/kg) was increased by 55% when compared with that of immobilized cells in the control culture (286 mOsm/kg). Furthermore, this enhancement of q(MAb) was not transient. Abrupt increase in osmolality, however, inhibited cell growth, resulting in no increase in volumetric MAb productivity (r(MAb)). On the other hand, gradual increase in osmolality allowed further cell growth while maintaining the enhanced q(MAb) immobilized cells. The q(MAb) immobilized cells at 395 mOsm/kg was 0.661 +/- 0.019 mug/10(6) cells/h, which is almost identical to that of immobilized cells exposed to abrupt osmotic stress. Accordingly, the r(MAb) was increased by ca. 40% when compared with that in the control immobilized cell culture. This enhancement in i(MAb) of immobilized S3H5/gamma2bA2 hybridoma cells by applying gradual osmotic stress suggests the potential of using hyperosmolar medium in other perfusion culture systems for improved MAb production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
At the end of a hybridoma batch culture, the cells are usually discarded after separation from the culture broth. If, however, they are aseptically recycled into the reactor, the production process can be resumed simply by the addition of fresh medium. This cycle can then be repeated several times consecutively. In a test case, with a mouse hybridoma, we found antibody yields for each cycle in the same range as for a standard batch. In a 15 1 stirred tank reactor we could, within 6 days, produce 2.8 g of monoclonal antibody (MAb). This type of reactor operation allowed a doubling in the reactor volumetric productivity (mg/l/day).  相似文献   

5.
Hybridoma cell growth and monoclonal antibody production in dialyzed continuous suspension culture were investigated using a 1.5-L Celligen bioreactor. Medium supplemented with 1.5% fetal bovine serum was fed directly into the reactor at a dilution rate of 0.45 d(-1). Dailysis tubing with a molecular weight cut-off (MWCO) of 1000 was coiled inside the bioreactor. Fresh medium containing no serum or serum substitues passed through the dialysis tubing at flow rates of 2 to 5 L/d. The objective was to remove low molecular weight inhibitors, such as lactic acid and ammonia, by diffusion through the tubing, while continuoulsy replenishing essential nutrients by the same mechanism. Due to the low MWCO of the dialysis tubing high molecular weight components such as growth factors and antibody were not removed by the dialyzing stream. In the batch start-up phase, the monoclonal antibody (MAb) titer was almost 3 times that achieved in typical batch cultures (i.e., 170 to 180 mg/L). During dialyzed continuous operation, a substantial increase (up to 40%) in cell density, monoclonal antibody (MAb) titer, and reactor MAb productivity was observed, as compared with a conventional continuous suspension culture. The cell viability and the specific MAb productivity remained practically constant at different dialysis rates. This finding suggests that the steady state growth and death rate in continuous suspension hybridoma cultures are not direct functions of the nutrient or inhibitor concentrations.  相似文献   

6.
Inhibition caused by rapid changes in the environment has earlier been observed in hybridoma cultures following deliberate step-changes in the culture environment. This paper presents evidence of similar effects occurring during the normal span of continuous cultures fed enriched medium at low dilution rates (0.002–0.005 1/h). The effect of this observation on optimisation is discussed. In continuous culture at a dilution rate of 0.013 1/h, a viable cell density of 4×109 cells/l was achieved by gradually increasing the nutrient concentration in the feed medium. The MAb titre was 200 mg/l representing a 6-fold increase compared to batch culture and a 2-fold increase compared to continuous culture using standard medium.  相似文献   

7.
目的:研究赭曲霉高密度培养的发酵培养基及条件,实现坎利酮的高转化.方法:选取廉价易得的培养基成分并进行优化,同时对发酵条件进行优化,得到了最优发酵培养基配方及培养条件.结果:发酵培养基最优配方为:葡萄糖20g/L,玉米浆20g/L,酵母膏20g/L,K2HPO4 2.5g/L.种子液最佳培养时间为24h,发酵培养基初始pH 5.8,接种量为8%,装液量200mL/1000mL,摇床转速为180 r/min,28℃,底物投料时间24h,发酵结束时间72 h.结论:将该工艺在7L发酵罐中放大,菌体密度达到25.36g/L,11α羟基坎利酮的转化率为86.1%.  相似文献   

8.
The effect of serum on cell growth and monoclonal antibody (MAb) productivity was studied in a repeated fedbatch mode using both free-suspended and immobilized S3H5/gamma2bA2 hybridoma cells. In the suspension culture, serum influenced the cell growth rate but not the specific MAb productivity. The average specific growth rate of the suspension culture in medium containing 10% serum was approximately 0.99 +/- 0.12 day(-1) (+/-standard deviation), while that in medium containing 1% serum was approximately 0.73 +/- 0.12 day(-1). The specific MAb productivity was almost constant at 3.69 +/- 0.57 mug/10(6) cells/day irrespective of serum concentration reached a maximum at ca. 1.8 x 10(6) cells/mL of medium in 10% serum medium, and the cell concentration was gradually reduced to 1%. The specific MAb productivity of the immobilized cells was more than three times higher than that of the free-suspended cells. The amount of serum in the medium did not influence the specific MAb production rate of the immobilized cells. The maintenance of high cell concentration and the enhanced specific MAb productivity of the immobilized cell culture resulted in a higher volumetric MAb productivity. In addition, MAb yield in the immobilized cell culture with medium containing 1% serum was 2.2 mg/mL of serum, which was approximately three times higher than that in the suspension culture.  相似文献   

9.
The flow-cytometric (FCM) analysis of bivariate DNA/lgG distributions has been conducted to study the cell cycle kinetics and monoclonal antibody (MAb) production during perfusion culture of hybridoma cells. Three different perfusion rates were employed to demonstrate the dependency of MAb synthesis and secretion on cell cycle and growth rate. The results showed that, during the rapid growth period of perfusion culture, the level of intracellular igG contents of hybridoma cells changed significantly at each perfusion rate, while the DNA histograms showing cell cycle phases were almost constant. Meanwhile, during the reduced growth period of perfusion culture, the fraction of cells in the S phase decreased, and the fraction cells in the G1/G0 phase increased with decreasing growth rate. The fraction of cells in the G2/M phase was relatively constant during the whole period of perfusion culture. Positive correlation was found between mean intracellular IgG contents and the specific MAb production rate, suggesting that the deletion of intracellular IgG contents by a flow cytometer could be used as a good indicator for the prediction of changes in specific MAb productivity following manipulation of the culture condition. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
A series of high-density media for mammalian cell culture were developed by step-fortifications of most nutrient components in RPMI-1640 medium. Each medium constituting the series was constructed to meet in vitro cell growth limitations. Four different cell lines were cultivated in the media series, and their growth characteristics were observed. Maximum cell densities varied in the range of 0.4 to 1.3 x 10(7) cells/mL, depending on cell lines. Cell growth responses to each of the media series were analyzed in terms of cell density and cell mass. Step increases of cell mass in the range of 1.3 to 3.7 g/L were observed according to the step-fortifications of nutrients. Also, the characteristics of each cell line were compared in terms of metabolic yields and specific productions of lactic acid and ammonium ion. The effect of step-fortifications of nutrients on the production of monoclonal antibody was also examined. Apparent differences in metabolic characteristics among cell lines were observed. Experimental results suggested that the different cell sizes and metabolic characteristics of each cell line resulted in cell-line-specific responses to the step-fortifications. The significant influence of nutritional fortifications on high-density culture of mammalian cells was evaluated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
Animal cell perfusion high density culture is often adopted for the production of biologicals in industry. In high density culture sometimes the productivity of biologicals has been found to be enhanced. Especially in immobilized animal cell culture, significant increase in the productivity has been reported. We have found that the specific monoclonal antibody (MAb) productivity of an immobilized hybridoma cell is enhanced more than double. Several examples of enhancing productivities have been also shown by collagen immobilized cells. Immobilized cells involve some different points from non-immobilized cells in high density culture: In immobilized culture, some cells are contacted together, resulting in locally much higher cell concentration more than 108 cells/ml. Information originating from a cell can be easily transduced to the others in immobilized culture because the distance between cells is much nearer. Here we have performed collagen gel immobilized culture of recombinant BHK cells which produce a human IgG monoclonal antibody in a protein-free medium for more than three months. In this high density culture a stabilized monoclonal antibody production was found with around 8 times higher specific monoclonal antibody productivity compared with that in a batch serum containing culture. No higher MAb productivity was observed using a conditioned medium which was obtained from the high density culture, indicating that no components secreted from the immobilized cells work for enhancing monoclonal antibody production. The MAb productivity by the non-immobilized cells obtained by dissolving collagen using a collagenase gradually decreased and returned to the original level in the batch culture using a fresh medium. This suggests that the direct contact of the cells or a very close distance between the cells has something to do with the enhancement of the MAb productivity, and the higher productivity is kept for a while in each cell after they are drawn apart.  相似文献   

12.
An online system using HPLC was developed for the measurement of glucose, glutamine, and lactate in a culture broth. Using the system, the glucose and glutamine concentrations were controlled simultaneously by an adaptive-control algorithm within the ranges of 0.2 to 2.0 and 0.1 to 0.6 g/L, respectively. When the glucose concentration was controlled at the low level of 0.2 g/L, the intracellular lactate dehydrogenase activity decreased by one-half and the lactate concentration by one-third, whereas the uptake rates of serine and glycine were about twice as high, compared with the amounts when the glucose concentration was controlled at 1.0 g/L. On the other hand, ammonia production increased when the glucose concentration was kept low. To reduce the production of inhibitory metabolites such as ammonia and lactate and improve the antibody production rate in a hybridoma cell culture, the concentrations of glucose and glutamine were controlled at 0.2 and 0.1 g/L, respectively. With these low concentrations of glucose and glutamine, the cell concentration (4.1 x 10(6) cells/mL) and antibody production (172 mg/L) both increased about twofold compared with the amounts when the glucose was controlled at higher levels. From these results, simultaneous control of the glucose and glutamine concentrations was shown to be useful in the production of antibody by hybridoma cell cultivation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
Mouse-human hybridoma 4H11 cells producing anti-Pseudomonas sp. monoclonal antibody (IgA) grew in a serum-free medium supplemented with insulin, transferrin, ethanolamine, and selenite (ITES). The hybridoma could be applied to high-density culture in a serum-free medium supplemented with ITES, 0.5% BSA, egg yolk VLDL, and artificial blood FC-43 in a culture vessel equipped with hollow-fiber modules for medium exchange. Total cell density reached 1.1 x 10(7) cells/mL (viable cell density was 7.6 x 10(6) cells/mL), and the IgA productivity was around 20 mug/10(6) cells/day in the serum-free medium, which corresponded to the levels in serum-supplemented medium.  相似文献   

14.
The possibilities of utilization of seawater enriched with ureas as the culture medium for a blue-green alga, Spirulina maxima, were investigated. Pretreatment by precipitation with NaHCO3 and (or) Na2CO3 was found essential to remove the excess amounts of Ca2+ and Mg2+ present in seawater prior to cultivation. A culture medium as good as the synthetic medium reported in the literature for the growth of S. maxima was obtained after treating seawater with NaHCO3 (19.2 g/L) at pH 9.2 and 35 degrees C for 2 h, filtering to remove precipitates, and enriching with K2HPO4 (0.5 g/L), NaNO3 (3.0 g/L), and FeSO4 (0.01 g/L). The same results were obtained by substituting a small amount (0.2 g/L or less) of either crystalline or polymerized urea for the NaNO3 in the above medium. Growth of S. maxima was inhibited at higher concentration of urea in the culture medium. The inhibition effect was due to the partial decomposition of urea into ammonia in alkali medium. Tests conducted on the 130-L cultivation open pond also confirmed that the seawater-urea medium supports growth of S. maxima as well as the best known synthetic medium.  相似文献   

15.
The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
Immobilization offers several intrinsic advantages over free suspension cultures for the production of monoclonal antibodies. An important advantage of immobilization is the improved specific monoclonal antibody (MAb) productivity (q(MAb)) that can be obtained. However, there are conflicting reports in the literature on the enhancement of the q(MAb) with immobilization. The discrepancies between these reports can be attributed to the different to either the cultivation methods used for immobilized cell or to difference between the cell lines used in the various studies. We show that these differences may be attributed to the different cultivation methods used for one model hybridoma cell line. S3H5/Upsilon2bA2 hybridoma cells entrapped in different sizes of calcium alginate beads were cultivated in both T- and spinner flasks in order to determine whether cultivation methods (T- and spinner flasks) and bead size influence the q(MAb) Free-suspended cell cultures inoculated with cells recovered from alginate beads were also carried out in order to determine whether changes in the q(Mab) of the entrapped cells are reversible.The cultivation methods was found to influence significantly the q(MAb) of the entrapped cells. When the entrapped cells in 1-mn diameter beads were cultivated in T-flasks, the q(MAb) was not increased by 200% as previously observed in an entrapped cell culture using 1-mm-diameter alginate beads in spinner flasks. The q(MAb) of the entrapped cell was approximately 58% higher than that of the free-suspended cells in a control experiment. Unlike the cultivation method, the bead size in the range of 1- to 3-mm diameter did not significantly influence the q(MAb), regardless of cultivations methods. The changes in q(MAb) of an entrapped cells were reversible. When the free-suspended cells recovered from the T- and spinner flasks were sub-cultured in T- and spinner flasks enhanced q(MAb) of the entrapped cells in both cases decreased to the level of the free-suspended cell in a control experiments. Taken together, these results shows that the method of cultivation of hybridoma cells immobilized in alginate beads determines the extent of enhancement of the q(MAb). (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
Lactic acid production by recycle batch fermentation using immobilized cells of Lactobacillus casei subsp. rhamnosus was studied. The culture medium was composed of whey treated with an endoprotease, and supplemented with 2.5 g/L of yeast extract and 0.18 mM Mn(2+) ions. The fermentation set-up comprised of a column packed with polyethyleneimine-coated foam glass particles, Pora-bact A, and connected with recirculation to a stirred tank reactor vessel for pH control. The immobilization of L. casei was performed simply by circulating the culture medium inoculated with the organism over the beads. At this stage, a long lag period preceded the cell growth and lactic acid production. Subsequently, for recycle batch fermentations using the immobilized cells, the reducing sugar concentration of the medium was increased to 100 g/L by addition of glucose. The lactic acid production started immediately after onset of fermentation and the average reactor productivity during repeated cycles was about 4.3 to 4.6 g/L . h, with complete substrate utilization and more than 90% product yield. Sugar consumption and lactate yield were maintained at the same level with increase in medium volume up to at least 10 times that of the immobilized biocatalyst. The liberation of significant amounts of cells into the medium limited the number of fermentation cycles possible in a recycle batch mode. Use of lower yeast extract concentration reduced the amount of suspended biomass without significant change in productivity, thereby also increasing the number of fermentation cycles, and even maintained the D-lactate amount at low levels. The product was recovered from the clarified and decolorized broth by ion-exchange adsorption. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:841-853, 1997.  相似文献   

18.
The production of an intracellular secondary metabolite rosmarinic acid (RA) by plant cell suspensions of Anchusa officinalis cultivated with intermittent medium exchange is investigated. Initially, a two-stage perfusion culture method was employed. After being cultured in the batch mode for ca. 6 days in B5 medium plus 3% sucrose, 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.1 mg/L kinetin (2,4-D B5 medium), Anchusa culture was cultivated to high cell density by perfusion during the growth stage using a hormone-free Gamborg B5 medium supplemented with 6% sucrose. This was followed by a production stage, in which a complete medium exchange into B5 medium plus 3% sucrose and 0.25 mg/L naphthleneacetic acid (NAA) was conducted. The two-stage perfusion culture had a higher maximum culture RA concentration but a lower RA content per cell than the batch stock culture maintained in the 2,4-D B5 medium. Higher culture RA concentration was due primarily to high cell density. The high packed cell volume, however, seemed to reduce the synergistic effect of NAA on RA synthesis. Subsequently, a single-stage perfusion culture method was investigated. The best result was obtained by growing the culture in the batch mode for ca. 10 days using B5 medium supplemented with 3% sucrose and 0.25 mg/L NAA, followed by perfusing the culture with B5 medium plus 6% sucrose and 0.25 mg/L NAA at a constant perfusion rate of 0.1/day. A maximum cell dry weight of 35 g/L and a RA concentration of almost 4 g/L were achieved. This is the highest RA concentration ever reported in the Anchusa culture. (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
We developed a substitute for serum to produce fed-batch cultures of hybridoma cells in serum-free medium and confirmed that the cells could be successfully cultivated this way. Our substitute consisted of 12 components. The specific production rates of lactate and ammonia, which are harmful byproducts from the cells, were significantly reduced compared with a conventional serum-containing batch culture. This reduction led to a higher cell concentration and a longer production lifetime. As a result, the final concentration of monoclonal antibody was 400 mg/L, or five times greater than that in the conventional serum-containing batch culture. The developed substitute is expected to enable fed-batch cultivation in a serum-free condition.  相似文献   

20.
A strategy for optimization of non-growth-associated production in batch culture employing an empirical approach was developed through the study of virginiamycin production. The strategy is formulated with two aims: attaining a high cell concentration at the beginning of the production phase without decrease in production activity; and enhancing the production activity during the production phase. As a practical example, the goal of a maximum virginiamycin (M and S) production in the batch culture of Streptomyces virginiae was set. To attain a high cell concentration in the production phase of the batch culture, that is, to extend the growth phase for as long as possible, the optimum composition and concentration of the complex medium, especially the yeast extract (YE) concentration, were first investigated. Dissolved oxygen (DO) concentration control was also a parameter considered in maintaining the production activity during the production phase. In addition, to enhance the production activity, an optimum addition strategy of an autoregulator, virginiae butanolide-C (VB-C), was investigated. Combining these measures, the optimum cultivation conditions were found to be an initial YE concentration in the complex medium of 45 g/L, the shot addition of 300 mug/L of VB-C 11.5 h after the start of the batch culture, and a DO concentration maintained above 2 mg/L. The maximum concentrations of virginiamycin M and S were about ninefold those obtained under nonoptimum cultivation conditions. Nonoptimum cultivation conditions consisted of an initial YE concentration one sixth (7.5 g/L) that of the optimum cultivation conditions, and no VB-C addition. These conditions were used as representative of the standard cultivation of virginiamycin in this study. The strategy developed here will be applicable to the production of other antibiotics, especially to the cultivation of Streptomyces species, in which a hormonelike signal material (an autoregulator) plays an important role in antibiotic production. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号