首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gu XY  Kianian SF  Foley ME 《Genetics》2005,171(2):695-704
Association of seed dormancy with shattering, awn, and black hull and red pericarp colors enhances survival of wild and weedy species, but challenges the use of dormancy genes in breeding varieties resistant to preharvest sprouting. A phenotypic selection and recurrent backcrossing technique was used to introduce dormancy genes from a wild-like weedy rice to a breeding line to determine their effects and linkage with the other traits. Five generations of phenotypic selection alone for low germination extremes simultaneously retained dormancy alleles at five independent QTL, including qSD12 (R(2) > 50%), as determined by genome-wide scanning for their main and/or epistatic effects in two BC(4)F(2) populations. Four dormancy loci with moderate to small effects colocated with QTL/genes for one to three of the associated traits. Multilocus response to the selection suggests that these dormancy genes are cumulative in effect, as well as networked by epistases, and that the network may have played a "sheltering" role in maintaining intact adaptive haplotypes during the evolution of weeds. Tight linkage may prevent the dormancy genes from being used in breeding programs. The major effect of qSD12 makes it an ideal target for map-based cloning and the best candidate for imparting resistance to preharvest sprouting.  相似文献   

2.
Gu XY  Kianian SF  Foley ME 《Genetics》2004,166(3):1503-1516
Weedy rice has much stronger seed dormancy than cultivated rice. A wild-like weedy strain SS18-2 was selected to investigate the genetic architecture underlying seed dormancy, a critical adaptive trait in plants. A framework genetic map covering the rice genome was constructed on the basis of 156 BC(1) [EM93-1 (nondormant breeding line)//EM93-1/SS18-2] individuals. The mapping population was replicated using a split-tiller technique to control and better estimate the environmental variation. Dormancy was determined by germination of seeds after 1, 11, and 21 days of after-ripening (DAR). Six dormancy QTL, designated as qSD(S)-4, -6, -7-1, -7-2, -8, and -12, were identified. The locus qSD(S)-7-1 was tightly linked to the red pericarp color gene Rc. A QTL x DAR interaction was detected for qSD(S)-12, the locus with the largest main effect at 1, 11, and 21 DAR (R(2) = 0.14, 0.24, and 0.20, respectively). Two, three, and four orders of epistases were detected with four, six, and six QTL, respectively. The higher-order epistases strongly suggest the presence of genetically complex networks in the regulation of variation for seed dormancy in natural populations and make it critical to select for a favorable combination of alleles at multiple loci in positional cloning of a target dormancy gene.  相似文献   

3.
Isolation of three dormancy QTLs as Mendelian factors in rice   总被引:6,自引:0,他引:6  
Gu XY  Kianian SF  Foley ME 《Heredity》2006,96(1):93-99
Seed dormancy is a key adaptive trait under polygenic control in many plants. We introduced the chromosomal regions containing the dormancy QTLs qSD1, qSD7-1, and qSD12 from an accession of weedy rice into a nondormant genetic background to examine component genetic effects and their interactions with time of afterripening (DAR). A BC4F2 plant, which was heterozygous for the three loci, was selected to develop the BC4F3 population. Single point analysis detected only qSD7-1 and qSD12 (R2 = 38-72%) at 10, 30, and 50 DAR in the population. However, multiple linear regression analysis detected genetic effects of the three QTLs and their trigenic epistasis, an environmental effect of DAR (E), and interactions of E with qSD12 and with the qSD1 x qSD7-1 and qSD7-1 x qSD12 epistases. The linear model demonstrates that QTL main effects varied with DAR, and that some epistasis or epistasis-by-DAR interactions partially counteract the main effects. The three QTLs were isolated as single Mendelian factors from the BC4F3 population and estimated for component genic effects based on the BC4F4 populations. Isolation improved estimation of the qSD1 effect and confirmed the major effect of qSD12. The qSD1 and qSD12 loci displayed a gene-additive effect. The qSD7-1, which was further narrowed to a chromosomal region encompassing the red pericarp color gene Rc, displayed gene additive and dominant effects.  相似文献   

4.
Preharvest sprouting (PHS) can be a problem in barley (Hordeum vulgare L.) especially malting barley, since rapid, uniform, and complete germination are critical. Information has been gained by studying the genetics of dormancy (measured as germination percentage, GP). The objective of this study was to determine if the quantitative trait loci (QTLs) discovered in previous research on dormancy are related to PHS. PHS was measured as sprout score (SSc) based on visual sprouting in mist chamber-treated spikes and as alpha-amylase activity (AA) in kernels taken from mist chamber-treated spikes that showed little or no visible sprouting. GP was also measured. All traits were measured at 0 and 14 days after physiological maturity. Evaluation of the spring six-row cross, Steptoe (dormant)/Morex (non-dormant) doubled haploid mapping population grown in greenhouse and field environments revealed QTL regions for SSc, AA, and GP on five, four, and six of the seven barley chromosomes, respectively. In total, seven and eight regions on five and six chromosomes had effects ranging from 4 to 31% and 3 to 39% on PHS and dormancy, respectively. One chromosome 3H and three chromosome 5H QTLs had the greatest effects. All PHS QTLs coincide with known dormancy QTLs, but some QTLs appear to be more important for PHS than for dormancy. Key QTLs identified should benefit breeding of barley for a suitable balance between PHS and dormancy.  相似文献   

5.
6.
Chromosome segment substitution lines (CSSLs) are a powerful alternative for locating quantitative trait loci (QTL), analyzing gene interactions, and providing starting materials for map-based cloning projects. We report the development and characterization of a CSSL library of a U.S. weedy rice accession ‘PSRR-1’ with genome-wide coverage in an adapted rice cultivar ‘Bengal’ background. The majority of the CSSLs carried a single defined weedy rice segment with an average introgression segment of 2.8 % of the donor genome. QTL mapping results for several agronomic and domestication traits from the CSSL population were compared with those obtained from two recombinant inbred line (RIL) populations involving the same weedy rice accession. There was congruence of major effect QTLs between both types of populations, but new and additional QTLs were detected in the CSSL population. Although, three major effect QTLs for plant height were detected on chromosomes 1, 4, and 8 in the CSSL population, the latter two escaped detection in both RIL populations. Since this was observed for many traits, epistasis may play a major role for the phenotypic variation observed in weedy rice. High levels of shattering and seed dormancy in weedy rice might result from an accumulation of many small effect QTLs. Several CSSLs with desirable agronomic traits (e.g. longer panicles, longer grains, and higher seed weight) identified in this study could be useful for rice breeding. Since weedy rice is a reservoir of genes for many weedy and agronomic attributes, the CSSL library will serve as a valuable resource to discover latent genetic diversity for improving crop productivity and understanding the plant domestication process through cloning and characterization of the underlying genes.  相似文献   

7.
In many wheat (Triticum aestivum L.) growing areas, pre-harvest sprouting (PHS) may cause important damage, and in particular, it has deleterious effects on bread-making quality. The relationship between PHS and grain color is well known and could be due either to the pleiotropic effect of genes controlling red-testa pigmentation (R) or to linkage between these genes and other genes affecting PHS. In the present work, we have studied a population of 194 recombinant inbred lines from the cross between two cultivars, ’Renan’ and ’Récital’, in order to detect QTLs for both PHS resistance and grain color. The variety ’Renan’ has red kernels and is resistant to PHS, while ’Récital’ has white grain and is highly susceptible to PHS. A molecular-marker linkage map of this cross was constructed using SSRs, RFLPs and AFLPs. The population was evaluated over 2 years at Clermont-Ferrand (France). PHS was evaluated on mature spikes under controlled conditions and red-grain color was measured using a chromameter. Over the 2 years, we detected four QTLs for PHS, all of them being co-localized with QTLs for grain color. Three of them were located on the long arm of chromosomes 3 A, 3B and 3D, close to the loci where the genes R and taVp1 were previously mapped. For these three QTLs, the resistance to PHS is due to the allele of the variety ’Renan’. Another co-located QTL for PHS and grain color was detected on the short arm of chromosome 5 A. The resistance for PHS for this QTL is due to the allele of ’Récital’. Received: 13 December 2000 / Accepted: 24 April 2001  相似文献   

8.
Genomic regions affecting seed shattering and seed dormancy in rice   总被引:43,自引:0,他引:43  
Non-shattering of the seeds and reduced seed dormancy were selected consciously and unconsciously during the domestication of rice, as in other cereals. Both traits are quantitative and their genetic bases are not fully elucidated, though several genes with relatively large effects have been identified. In the present study, we attempted to detect genomic regions associated with shattering and dormancy using 125 recombinant inbred lines obtained from a cross between cultivated and wild rice strains. A total of 147 markers were mapped on 12 rice chromosomes, and QTL analysis was performed by simple interval mapping and composite interval mapping. For seed shattering, two methods revealed the same four QTLs. On the other hand, for seed dormancy a number of QTLs were estimated by the two methods. Based on the results obtained with the intact and de-hulled seeds, QTLs affecting hull-imposed dormancy and kernel dormancy, respectively, were estimated. Some QTLs detected by simple interval mapping were not significant by composite interval mapping, which reduces the effects of residual variation due to the genetic background. Several chromosomal regions where shattering QTLs and dormancy QTLs are linked with each other were found. This redundancy of QTL associations was explained by ”multifactorial linkages” followed by natural selection favoring these two co-adapted traits. Received: 23 November 1998 / Accepted: 27 August 1999  相似文献   

9.
Many different crop species were selected for a common suite of ‘domestication traits’, which facilitates their use for studies of parallel evolution. Within domesticated rice (Oryza sativa), there has also been independent evolution of weedy strains from different cultivated varieties. This makes it possible to examine the genetic basis of parallel weed evolution and the extent to which this process occurs through shared genetic mechanisms. We performed comparative QTL mapping of weediness traits using two recombinant inbred line populations derived from crosses between an indica crop variety and representatives of each of the two independently evolved weed strains found in US rice fields, strawhull (S) and blackhull awned (B). Genotyping‐by‐sequencing provided dense marker coverage for linkage map construction (average marker interval <0.25 cM), with 6016 and 13 730 SNPs mapped in F5 lines of the S and B populations, respectively. For some weediness traits (awn length, hull pigmentation and pericarp pigmentation), QTL mapping and sequencing of underlying candidate genes confirmed that trait variation was largely attributable to individual loci. However, for more complex quantitative traits (including heading date, panicle length and seed shattering), we found multiple QTL, with little evidence of shared genetic bases between the S and B populations or across previous studies of weedy rice. Candidate gene sequencing revealed causal genetic bases for 8 of 27 total mapped QTL. Together these findings suggest that despite the genetic bottleneck that occurred during rice domestication, there is ample genetic variation in this crop to allow agricultural weed evolution through multiple genetic mechanisms.  相似文献   

10.
Phytochemicals such as phenolics and flavonoids in rice grain are antioxidants that are associated with reduced risk of developing chronic diseases including cardiovascular disease, type-2 diabetes and some cancers. Understanding the genetic basis of these traits is necessary for the improvement of nutritional quality by breeding. Association mapping based on linkage disequilibrium has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, genome-wide association mapping using models controlling both population structure (Q) and relative kinship (K) were performed to identify the marker loci/QTLs underlying the naturally occurring variations of grain color and nutritional quality traits in 416 rice germplasm accessions including red and black rice. A total of 41 marker loci were identified for all the traits, and it was confirmed that Ra (i.e., Prp-b for purple pericarp) and Rc (brown pericarp and seed coat) genes were main-effect loci for rice grain color and nutritional quality traits. RM228, RM339, fgr (fragrance gene) and RM316 were important markers associated with most of the traits. Association mapping for the traits of the 361 white or non-pigmented rice accessions (i.e., excluding the red and black rice) revealed a total of 11 markers for four color parameters, and one marker (RM346) for phenolic content. Among them, Wx gene locus was identified for the color parameters of lightness (L*), redness (a*) and hue angle (H o). Our study suggested that the markers identified in this study can feasibly be used to improve nutritional quality or health benefit properties of rice by marker-assisted selection if the co-segregations of the marker–trait associations are validated in segregating populations.  相似文献   

11.
Chromosome segment substitution lines (CSSLs) are powerful tools for detecting and precisely mapping quantitative trait loci (QTLs) and evaluating gene action as a single factor. In this study, 103 CSSLs were produced using two sequenced rice cultivars: 93-11, an elite restorer indica cultivar as recipient, and Nipponbare, a japonica cultivar, as donor. Each CSSL carried a single chromosome substituted segment. The total length of the substituted segments in the CSSLs was 2,590.6 cM, which was 1.7 times of the rice genome. To evaluate the potential application of these CSSLs for QTL detection, phenotypic variations of seed shattering, grain length and grain width in 10 CSSLs were observed. Two QTLs for seed shattering and three for grain length and grain width were identified and mapped on rice chromosomes. The results demonstrate that CSSLs are excellent genetic materials for dissecting complex traits into a set of monogenic loci. These CSSLs are of great potential value for QTL mapping and plant marker-assisted breeding (MAB).  相似文献   

12.
A doubled haploid population derived from anther culture of ZYQ8/JX17 F1, a typical indica and japonica hybrid, was used in this study. Morphological index and its related taxonomic traits were investigated in 121 DH lines. The quantitative trait loci (QTLs) for morphological index and its related taxonomic traits were analyzed. Two major QTLs for leaf hairiness, three QTLs for length/width of grain, one QTL for color of hull when heading, one QTL for hairiness of hull, two QTLs for length of the first and second panicle internode, and one major QTL and two QTLs for phenol reaction were detected. Four QTLs for morphological index were also identified on chromosomes 1, 3, 4 and 6, respectively, three of which on chromosomes 1, 3 and 6, respectively, were found to be located in the same chromosome regions where some QTLs for the related taxonomic traits were located.  相似文献   

13.
Seed shattering is an important factor causing loss of grain yield before and during rice harvest. In the present study, the quantitative trait loci regarding shattering scale, breaking tensile strength (BTS) and abscission layer (AL), the parameters evaluating seed shattering habit by hand gripping, a digital force gauge and observation on AL, respectively, were identified by using an doubled haploid line (DHL) population from a cross between a loose-shattering type Tongil variety, ‘Samgang’, and a moderately difficult shattering japonica variety, ‘Nagdong’. Eight QTLs consisted in four QTLs for shattering scale, two QTLs for AL, each one QTL for pulling and bending strength were detected on six chromosomes, respectively. Among them, Qss1 with flanking markers RM6696 and RM476 explained 31% of phenotype variation in shattering scale. Furthermore, two new QTLs controlling shattering habit, Qss5-2 and Qal5-1, were located on chromosome 5 at the interval 5028–5037 and 5021-RM289. They explained 10% and 12% of phenotype variations, respectively. A total of eleven digenic epistatic loci were identified for four parameters. The identification of QTLs affecting seed shattering habits is favorable to thoroughly dissect the genetic mechanism of the shattering habit and to apply for marker-assisted selection in rice breeding system of specific regions.  相似文献   

14.
Wheat pre-harvest sprouting (PHS) can cause significant reduction in yield and end-use quality of wheat grains in many wheat-growing areas worldwide. To identify a quantitative trait locus (QTL) for PHS resistance in wheat, seed dormancy and sprouting of matured spikes were investigated in a population of 162 recombinant inbred lines (RILs) derived from a cross between the white PHS-resistant Chinese landrace Totoumai A and the white PHS-susceptible cultivar Siyang 936. Following screening of 1,125 SSR primers, 236 were found to be polymorphic between parents, and were used to screen the mapping population. Both seed dormancy and PHS of matured spikes were evaluated by the percentage of germinated kernels under controlled moist conditions. Twelve SSR markers associated with both PHS and seed dormancy were located on the long arm of chromosome 4A. One QTL for both seed dormancy and PHS resistance was detected on chromosome 4AL. Two SSR markers, Xbarc 170 and Xgwm 397, are 9.14 cM apart, and flanked the QTL that explained 28.3% of the phenotypic variation for seed dormancy and 30.6% for PHS resistance. This QTL most likely contributed to both long seed dormancy period and enhanced PHS resistance. Therefore, this QTL is most likely responsible for both seed dormancy and PHS resistance. The SSR markers linked to the QTL can be used for marker-assisted selection of PHS-resistant white wheat cultivars. Shi-Bin Cai and Cui-Xia Chen contributed equally to this work.  相似文献   

15.
Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping.  相似文献   

16.
The appearance and cooking quality of rice determine its acceptability and price to a large extent. Quantitative trait loci (QTLs) for 12 grain quality traits were mapped in 2 mapping populations derived from Oryza sativa cv Swarna × O. nivara. The BC(2)F(2) population of the cross Swarna × O. nivara IRGC81848 (population 1) was evaluated during 2005 and that from Swarna × O. nivara IRGC81832 (population 2) was evaluated during 2006. Linkage maps were constructed using 100 simple sequence repeat (SSR) markers in population 1 and 75 SSR markers in population 2. In all, 21 QTLs were identified in population 1 (43% from O. nivara) and 37 in population 2 (38% QTLs from O. nivara). The location of O. nivara-derived QTLs mp1.2 for milling percent, kw6.1 for kernel width, and klac12.1 for kernel length after cooking coincided in the 2 populations and appear to be useful for Marker Assisted Selection (MAS). Four QTLs for milling percent, 1 QTL each for amylose content, water uptake, elongation ratio, 2 QTLs for kernel width, and 3 QTLs for gel consistency, each explained more than 20% phenotypic variance. Three QTL clusters for grain quality traits were close to the genes/QTLs for shattering and seed dormancy. QTLs for 4 quality traits were associated with 5 of the 7 major yield QTLs reported in the same 2 mapping populations. Useful introgression lines have been developed for several agronomic traits. It emerges that 40% O. nivara alleles were trait enhancing in both populations, and QTLs for grain quality overlapped with yield meta-QTLs and QTLs for dormancy and seed shattering.  相似文献   

17.
Pre-harvest sprouting (PHS) is a complex trait controlled by multiple genes with strong interaction between environment and genotype that makes it difficult to select breeding materials by phenotypic assessment. One of the most important genes for pre-harvest sprouting resistance is consistently identified on the long arm of chromosome 4A. The 4AL PHS tolerance gene has therefore been targeted by Australian white-grained wheat breeders. A new robust PCR marker for the PHS QTL on wheat chromosome 4AL based on candidate genes search was developed in this study. The new marker was mapped on 4AL deletion bin 13-0.59-0.66 using 4AL deletion lines derived from Chinese Spring. This marker is located on 4AL between molecular markers Xbarc170 and Xwg622 in the doubled-haploid wheat population Cranbrook × Halberd. It was mapped between molecular markers Xbarc170 and Xgwm269 that have been previously shown to be closely linked to grain dormancy in the doubled haploid wheat population SW95-50213 × Cunningham and was co-located with Xgwm269 in population Janz × AUS1408. This marker offers an additional efficient tool for marker-assisted selection of dormancy for white-grained wheat breeding. Comparative analysis indicated that the wheat chromosome 4AL QTL for seed dormancy and PHS resistance is homologous with the barley QTL on chromosome 5HL controlling seed dormancy and PHS resistance. This marker will facilitate identification of the gene associated with the 4A QTL that controls a major component of grain dormancy and PHS resistance.  相似文献   

18.
Quantitative trait loci (QTL) analysis for pre-harvest sprouting tolerance (PHST) in bread wheat was conducted following single-locus and two-locus analyses, using data on a set of 110 recombinant inbred lines (RILs) of the International Triticeae Mapping Initiative population grown in four different environments. Single-locus analysis following composite interval mapping (CIM) resolved a total of five QTLs with one to four QTLs in each of the four individual environments. Four of these five QTLs were also detected following two-locus analysis, which resolved a total of 14 QTLs including 8 main effect QTLs (M-QTLs), 8 epistatic QTLs (E-QTLs) and 5 QTLs involved in QTL × environment (QE) or QTL × QTL × environment (QQE) interactions, some of these QTLs being common. The analysis revealed that a major fraction (76.68%) of the total phenotypic variation explained for PHST is due to M-QTLs (47.95%) and E-QTLs (28.73%), and that only a very small fraction of variation (3.24%) is due to QE and QQE interactions. Thus, more than three-quarters of the genetic variation for PHST is fixable and would contribute directly to gains under selection. Two QTLs that were detected in more than one environment and at LOD scores above the threshold values were located on 3BL and 3DL presumably in the vicinity of the dormancy gene TaVp1. Another QTL was found to be located on 3B, perhaps in close proximity to the R gene for red grain colour. However, these associations of QTLs for PHST with genes for dormancy and grain colour are only suggestive. The results obtained in the present study suggest that PHST is a complex trait controlled by large number of QTLs, some of them interacting among themselves or with the environment. These QTLs can be brought together through marker-aided selection, leading to enhanced PHST.  相似文献   

19.
A doubled haploid population derived from anther culture of ZYQ8/JX17 F1, a typical indica and japonica hybrid, was used in this study. Morphological index and its related taxonomic traits were investigated in 121 DH lines. The quantitative trait loci (QTLs) for morphological index and its related taxonomic traits were analyzed. Two major QTLs for leaf hairiness, three QTLs for length/width of grain, one QTL for color of hull when heading, one QTL for hairiness of hull, two QTLs for length of the first and second panicle internode, and one major QTL and two QTLs for phenol reaction were detected. Four QTLs for morphological index were also identified on chromosomes 1, 3, 4 and 6, respectively, three of which on chromosomes 1, 3 and 6, respectively, were found to be located in the same chromosome regions where some QTLs for the related taxonomic traits were located.  相似文献   

20.
 To detect quantitative trait loci (QTLs) controlling seed dormancy, 98 BC1F5 lines (backcross inbred lines) derived from a backcross of Nipponbare (japonica)/Kasalath (indica)//Nipponbare were analyzed genetically. We used 245 RFLP markers to construct a framework linkage map. Five putative QTLs affecting seed dormancy were detected on chromosomes 3, 5, 7 (two regions) and 8, respectively. Phenotypic variations explained by each QTL ranged from 6.7% to 22.5% and the five putative QTLs explained about 48% of the total phenotypic variation in the BC1F5 lines. Except for those of the QTLs on chromosome 8, the Nipponbare alleles increased the germination rate. Five putative QTLs controlling heading date were detected on chromosomes 2, 3, 4, 6 and 7, respectively. The phenotypic variation explained by each QTL for heading date ranged from 5.7% to 23.4% and the five putative QTLs explained about 52% of the total phenotypic variation. The Nipponbare alleles increased the number of days to heading, except for those of two QTLs on chromosomes 2 and 3. The map location of a putative QTL for heading date coincided with that of a major QTL for seed dormancy on chromosome 3, although two major heading-date QTLs did not coincide with any seed dormancy QTLs detected in this study. Received: 10 October 1997 / Accepted: 12 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号