首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Initiation factor IF-E2 was isolated from rabbit reticulocytes and purified 120-fold to near homogeneity by ammonium sulfate fractionation, column chromatography on DEAE-cellulose and phosphocellulose, and, when suitable, by sucrose density gradient centrifugation. The factor is a complex protein containing three nonidentical polypeptides of molecular weight 57,000, 52,000, and 36,000. It behaves as a complex throughout its purification and during polyacrylamide gel electrophoresis in nondenaturing buffer but its thress components are readily separated by electrophoresis in denaturing buffers. None of its components corresponds to any of the polypeptides of the other initiation factors or to any proteins of ribosomes washed in buffers containing a high salf concentration. A stoichiometric ratio of 1:1:1 was determined for the three polypeptides; based on the assumption of one copy each per complex, the calculated factor molecular weight is 145,000, a value in agreement with the measured value of 160,000. Initiation factor IF-E2 was radioactively labeled in vitro by reductive alkylation or by phosphorylation with a protein kinase also isolated from rabbit reticulocytes. Neither procedure causes a measurable change in the ability of the factor to form a ternary complex with GTP and the initiator methionyl-tRNA. 5'-Guanylyl-methylenediphosphonate may substitute for GTP, but only at relatively high concentrations. The binding of labeled initiation factor IF-E2 and methionyl-tRNA to the 40 S ribosomal subunit was studied by sucrose density gradient centrifugation. Appreciable binding of the factor is seen only when all three components of the ternary complex are included in the reaction mixture. The binding of either the factor or methionyl-tRNA was not stimulated by the addition of globin messenger RNA and initiation factor IF-E3. It was shown that all three polypeptide components of initiation factor IF-E2 are bound to these nascent initiation complexes.  相似文献   

2.
Eukaryotic initiation factor (eIF)-5, isolated from rabbit reticulocyte lysates, is a monomeric protein of Mr = 58,000-62,000. Immunochemical methods were employed to identify eIF-5 in crude cell lysates. Antisera against purified denatured eIF-5 were prepared in rabbits and characterized by immunoblotting and immunoprecipitation techniques using native and denatured eIF-5 as antigens. Monospecific antibodies to denatured eIF-5 were affinity-purified using eIF-5 blotted onto aminophenylthioether paper. Rabbit reticulocytes, HeLa cells and mouse L cells were lysed directly into a denaturing buffer containing 3% sodium dodecyl sulfate. The denatured proteins were analyzed by polyacrylamide gel electrophoresis followed by immunoblotting with anti-eIF-5 antibodies. With each lysate, one major immunoreactive polypeptide was observed whose molecular weight corresponded to that of purified eIF-5 (Mr = 58,000-62,000). No degradation products or precursor forms of molecular weight higher than 62,000 were detected in any lysate. These results indicate that isolated eIF-5 is the same size as that found in crude lysates. Additional characterization of eIF-5 indicates that purified eIF-5 can be phosphorylated at serine residues in vitro by casein kinase II. Furthermore, in vitro phosphorylated eIF-5 retains full biological activity in catalyzing the joining of 60 S ribosomal subunits to a preformed 40 S ribosomal initiation complex to form an 80 S initiation complex. Based on its specific activity, we demonstrate that 1 pmol of rabbit reticulocyte eIF-5 mediates the formation of approximately 180 pmol of 80 S initiation complex under the conditions of in vitro initiation reactions.  相似文献   

3.
Two forms of elongation factor 1 (EF-1) have been tested for a variety of biological functions. One form, EF-1H, is a high-molecular-weight aggregate (Mr > 500,000) containing four distinct polypeptides (α, β, γ, δ). The other form, EF-1α, consists of a single polypeptide which is the same as the α subunit of EF-1H. Both EF-1α and EF-1H function catalytically in binding Phe-tRNA to ribosomes, and in poly(U)-directed polyphenylalanine synthesis. The activity of EF-1α is enhanced in polyphenylalanine synthesis by a complementary component, EF-1βδ. It is also shown that EF-1βδ can facilitate an exchange of EF-1α-bound GDP for GTP. The EF-1α dissociation constants for GDP and GTP were 0.47 and 0.55 μm respectively, while the EF-1H dissociation constants for GDP and GTP were 2.0 and 1.6 μm, respectively. Thus, while EF-1α and EF-1H had approximately the same affinities for GDP and GTP, the EF-1α dissociation constants were about fourfold lower than the EF-1H dissociation constants. Attempts to isolate complexes of EF-1α or EF-1H with GTP and Phe-tRNA or with GTP, Phe-tRNA, and ribosomes were unsuccessful using either Millipore filters, gel filtration, or sucrose density gradients. The results presented in this report, along with studies from other laboratories, strengthen the hypothesis that the general mechanism of the elongation cycle is similar in eucaryotes and procaryotes.  相似文献   

4.
Complexes of purified 40S ribosomal subunits and initiation factor 3 from rabbit reticulocytes were crosslinked using the reversible protein crosslinking reagent, 2-iminothiolane, under conditions shown previously to lead to the formation of dimers between 40S proteins but not higher multimers. The activity of both the 40S subunits and initiation factor 3 was maintained. Protein crosslinked to the factor was purified by sucrose density gradient centrifugation following nuclease digestion of the ribosomal subunit: alternatively, the total protein was extracted from 40S: factor complexes. The protein obtained by either method was analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Ribosomal proteins were found in multimeric complexes of high molecular weight due to their crosslinking to components of eIF3. Identification of the ribosomal proteins appearing below the diagonal was accomplished by elution, radioiodination, two-dimensional polyacrylamide/urea gel electrophoresis, and radioautography. Proteins S2, S3, S3a, S4, S5, S6, S8, S9, S11, S12, S14, S15, S16, S19, S24, S25, and S26 were identified. Because many of the proteins in this group form crosslinked dimers with each other, it was impossible to distinguish proteins directly crosslinked to eIF3 from those crosslinked indirectly through one bridging protein. The results nonetheless imply that the 40S ribosomal proteins identified are at or near the binding site for initiation factor 3.  相似文献   

5.
Eukaryotic initiation factor 2 (eIF-2) contains three nonidentical subunits, alpha, beta, and gamma. The simultaneous purification of all three subunits was achieved by reverse-phase HPLC using a 0.1% trifluoroacetic acid-acetonitrile binary solvent system. The order of the eluted subunits, beta, alpha, and gamma, was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After hydrolysis in 6 N HCl, picomole level amino acid composition analysis was achieved by the ninhydrin reaction on a Beckman 6300 system. Using second-derivative spectroscopic analysis, Trp was detected in all three subunits. All three subunits were subjected to amino-terminal sequence analysis. The amino-terminal of eIF-2 alpha from amino acid positions 1 to 23 inclusive was determined. The order of eight amino acids from the amino-terminal of eIF-2 gamma was also determined. This characterization and partial determination of the primary sequence of these subunits permit the utilization of molecular biology techniques in order to elucidate the complete primary structure. Additionally, the partial amino acid sequence data permitted the designation of synthetic gene probes as well as the identification of eIF-2 alpha and gamma cDNA and/or genomic clones.  相似文献   

6.
Previous studies have indicated that the high-molecular-weight form of elongation factor 1 (EF-1H) contained four subunits (α, β, γ, and δ). Using the conventional methods of gel-filtration and ion-exchange chromatography, various forms of elongation factor 1 (EF-1α, EF-βδ, EF-1βγδ) have been purified from rabbit reticulocyte lysate. The procedure described allows one to purify these factors from a single batch of lysate in sufficient amounts for physical and biochemical studies. EF-1α is a single polypeptide of Mr 52,000, and has an isoelectric point of 9.1. EF-1βδ and EF-1βγδ are composed of two and three nonidentical polypeptides, respectively, as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Both proteins can form stable aggregates in native conditions that can reach more than 2,000,000 Da. The isoelectric point for each polypeptide was determined; 5.8 for EF-1β, 5.5 for EF-1γ, and 4.8 for EF-1δ. The activity of both proteins was compared on a molecular basis by their ability to stimulate EF-1α in the poly(U)-directed synthesis of polyphenylalanine. On the basis of this assay EF-1βγδ is slightly more active than EF-1βδ. The similarity of the amino acid composition of EF-1γ and EF-1δ and the molar ratio of α:β:γ:δ in EF-1H of approximately 1:1:0.5:0.5 have led to the conclusion that EF-1δ is probably a breakdown product of EF-1γ, and that the native form of EF-1H probably contains only the α, β, and γ subunits.  相似文献   

7.
Eukaryotic initiation factor 5 (eIF-5) has been purified from the ribosomal salt-wash proteins of rabbit reticulocyte lysates. The purified factor migrates as a single polypeptide upon sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of about 58,000-62,000. In contrast, less pure preparations of reticulocyte eIF-5 behave in gel filtration columns and in glycerol gradient centrifugation in buffers containing 75-100 mM KCl as a protein of apparent Mr = 140,000-160,000. Presumably, this is due to association of the factor with other proteins, since eIF-5 activity present in such preparations can also be shown by (a) glycerol gradient centrifugation in buffers containing 500 mM KCl or (b) gel electrophoresis under denaturing conditions, to be associated with a 58,000-62,000-dalton protein. Furthermore, eIF-5 purified from rabbit reticulocyte lysates in the absence or presence of protease inhibitors is indistinguishable with regard to molecular weight and final specific activity. It can be calculated that 1 pmol of the purified eIF-5 catalyzes the formation of nearly 50 pmol of 80 S initiation complex under in vitro initiation reaction conditions. Because of the highly catalytic activity of eIF-5 in initiation reactions, the presence of even low levels of eIF-5 in eIF-2 preparations causes hydrolysis of GTP bound to the 40 S initiation complex. This results in destabilization of Met-tRNA(f) bound to the 40 S complex in sucrose gradient centrifugation.  相似文献   

8.
Initiation factor MP was purified 1570-fold with 67% recovery of total activity present in 0.5 M KCl extracts of rabbit reticulocyte ribosomes. Initiation factor MP forms a ternary complex with Met-tRNAf and GTP or a binary complex with Met-tRNAf alone, the details of which are presented in the accompanying paper (Safer, B., Adams, S. L., Anderson. W. F., and Merrick, W. C. (1975) J. Biol. Chem. 250, 9076-9082). Initiation factor MP was homogeneous by the following criteria: (a) electrophoresis as a single band in gels of 5, 6, 7, 8, 9, and 10% acrylamide; (b) equilibration as a single band during isoelectric focusing; (c) sedimentation as a single symmetrical boundary during sedimentation velocity experiments; (d) linear plots of sedimentation equilibrium data; (e) symmetrical absorbance (at 280 nm) and activity profiles during DEAE-cellulose and Sephadex G-200 chromatography, and (f) symmetrical distribution of initiation factor MP during sucrose density gradient band sedimentation. The molecular weight of the initiation factor MP monomer (0.2 mg/ml) by low speed sedimentation equilibrium was 90,800. Calculations based on the Stokes radius and sedimentation velocity show the existence of relatively stable 90,000-dalton monomers or 180,000-dalton dimers at low (0.1 mg/ml) and high (9.75 mg/ml) concentrations of initiation factor MP, respectively. Electrophoresis in sodium dodecyl sulfate gels indicates that initiation factor MP monomer is composed of two noncovalently linked subunits with molecular weights of 52,000 and 34,000. Despite a relatively normal amino acid composition and an isoelectric point of 6.4, initiation factor MP behaves as a basic protein, eluting from phosphocellulose at 650 mM KCl (pH 7.9). Both ternary complex formation and methionyl-puromycin synthesis co-purify, indicating that a single protein is required for both activities.  相似文献   

9.
10.
Identification and characterization of eukaryotic initiation factor 5A-2.   总被引:3,自引:0,他引:3  
The phylogenetically conserved eukaryotic translation initiation factor 5A (eIF5A) is the only known cellular protein to contain the post-translationally derived amino acid hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine]. Both eIF5A and its hypusine modification are essential for sustained cell proliferation. Normally only one eIF5A protein is expressed in human cells. Recently, we identified a second human EIF5A gene that would encode an isoform (eIF5A-2) of 84% sequence identity. Overexpression of eIF5A-2 mRNA in certain human cancer cells, in contrast to weak normal expression limited to human testis and brain, suggests EIF5A2 as a potential oncogene. However, eIF5A-2 protein has not been described in human or mammalian cells heretofore. Here, we describe the identification of eIF5A-2 protein in human colorectal and ovarian cancer lines, SW-480 and UACC-1598, that overexpress eIF5A-2 mRNAs. Functional characterization of the human isoforms revealed that either human EIF5A gene can complement growth of a yeast strain in which the yeast EIF5A genes were disrupted. This indicates functional similarity of the human isoforms in yeast and suggests that eIF5A-2 has an important role in eukaryotic cell survival similar to that of the ubiquitous eIF5A-1. Detectable structural differences were also noted, including lack of immunological cross-reactivity, formation of different complexes with deoxyhypusine synthase, and Km values (1.5 +/- 0.2 vs. 8.3 +/- 1.4 microm for eIF5A-1 and -2, respectively) as substrates for deoxyhypusine synthase in vitro. These physical characteristics and distinct amino acid sequences in the C-terminal domain together with differences in gene expression patterns imply differentiated, tissue-specific functions of the eIF5A-2 isoform in the mammalian organism and in cancer.  相似文献   

11.
12.
Affinity chromatography on beta,gamma-methylene guanosine 5'-triphosphate-Sepharose was used to purify protein synthesis initiation factor eIF-2 from chicken reticulocytes. Gel filtration of the purified factor gave a molecular weight of 150,000, whereas electrophoresis of the purified factor on polyacrylamide gel containing sodium dodecyl sulfate revealed three non-identical subunits with apparent molecular weight of 57,000, 41,000 and 33,000. With Met-tRNA and GTP, the factor formed a ternary complex which would bind the 40S ribosomal subunits. Treatment of the factor with N-ethylmaleimide resulted in a loss of activity. Two sulfhydryl groups per eIF-2 molecule were essential for activity.  相似文献   

13.
14.
Two polypeptide chain initiation factors, eukaryotic initiation factor 2 (eIF-2) and guanine nucleotide exchange factor (GEF), were isolated from rat liver. Two forms of eIF-2 were identified, one contained three subunits (alpha, beta, and gamma), and the other contained only the alpha- and gamma-subunits. The three-subunit form was similar to eIF-2 from rabbit reticulocytes with respect to the sedimentation coefficient, Stokes radius, molecular weight of the alpha- and gamma-subunits, ability to restore protein synthesis in hemin-deficient reticulocyte lysate, and immunological cross-reactivity of the alpha-subunits using antibodies against liver eIF-2. In contrast, the beta-subunits of the liver and reticulocyte factors were distinct; they had different molecular weights, and antibodies against rat liver eIF-2 beta did not recognize the beta-subunit of the reticulocyte factor. Furthermore, the GDP dissociation constant for reticulocyte eIF-2 was more than twice that of the liver factor. GEF from rat liver reversed GDP inhibition of the ternary complex assay and catalyzed the exchange of eIF-2-bound GDP for free GDP or GTP, characteristics ascribed to the corresponding protein from rabbit reticulocytes. However, its subunit composition and molecular weight were different from those reported for reticulocyte GEF. The T1/2 for GDP exchange mediated by GEF was about 5-fold slower with two-subunit than with three-subunit eIF-2. In addition, the KD for GDP was lower for two-subunit than for three-subunit eIF-2 when GEF was present. Taken together, these data demonstrate species-associated variability in the beta-subunit of eIF-2 and suggest a crucial role for the beta-subunit in the functional interaction of eIF-2 and GEF.  相似文献   

15.
The initiation of haemoglobin synthesis in rabbit reticulocytes   总被引:3,自引:2,他引:1       下载免费PDF全文
1. The incorporation of labelled valine by rabbit reticulocytes into the N-terminal position of nascent haemoglobin was investigated by deaminating the nascent peptides with nitrous acid and isolating labelled alpha-hydroxyisovaleric acid and valine after acid hydrolysis. 2. The amount of radioactivity in alpha-hydroxyisovaleric acid relative to that in valine indicated the presence of 12.3% N-terminal valine having a free amino group. This high value suggests that most if not all nascent peptides contain valine in the N-terminal position. 3. Cell-free preparations containing reticulocyte ribosomes and pH5 enzymes incorporated alpha-hydroxy-[(14)C]isovaleryl-tRNA (where tRNA refers to transfer RNA), which was obtained by deamination of [(14)C]valyl-tRNA from yeast or liver with nitrous acid, into both soluble and nascent protein. 4. When the soluble protein was chromatographed on CM-cellulose, radioactivity was found to be associated with both the alpha-and beta-globin chains. 5. The kinetics of hydrolysis of [(14)C]valine, was also investigated. Most of the material was hydrolysed rapidly at pH10, but a minor component that was relatively stable appeared to be present to the extent of about 10% of the total valyl-tRNA. Valine was, however, the only hydrolysis product detected by paper chromatography. 6. It is concluded that chain initiation in haemoglobin synthesis involves valine as the N-terminal amino acid and that the amino group of nascent protein is probably not substituted.  相似文献   

16.
[14C]Eukaryotic initiation factor 2 (eIF-2), obtained by reductive methylation of the purified initiation factor, was shown to be active in the unfractionated reticulocyte lysate. This allowed a direct measurement of the endogenous pool size of eIF-2 in rabbit reticulocyte lysate according to the principle of isotope dilution. A value of 20 to 30 pmol/ml of lysate was obtained. Although translational inhibition resulting from hemin deficiency appears to be characterized by a change from catalytic to stoichiometric utilization of eIF-2, the pool size of eIF-2 is too small to account for the normal period of protein synthesis before the onset of translation inhibition. This suggests, therefore, that additional events to eIF-2 alpha phosphorylation may be required for translational inhibition.  相似文献   

17.
In contrast to reticulocyte polypeptide chain initiation factor 2 (eIF-2), the Artemia factor retains activity in the presence of Mg2+ or after phosphorylation of its alpha-subunit by rabbit reticulocyte heme-controlled repressor (Mehta, H. B., Woodley, C. L., and Wahba, A. J. (1983) J. Biol. Chem. 258, 3438-3441). Furthermore, we have so far been unable to demonstrate a requirement for a GDP/GTP nucleotide exchange factor with Artemia eIF-2. In order to explain these differences we compared the structure of eIF-2 from Artemia and rabbit reticulocytes by using one- and two-dimensional phosphopeptide and iodopeptide maps. Partial trypsin digestion of the alpha-subunit of Artemia eIF-2 after phosphorylation by the heme-controlled repressor generates a 4000 Mr phosphopeptide. Upon extensive trypsin digestion, the two-dimensional phosphopeptide maps of the alpha-subunits for the reticulocyte and Artemia factors are indistinguishable, whereas the iodopeptide maps are different. In addition, immunoblotting indicates that there is no consistent cross-reactivity of the reticulocyte subunits with antibodies prepared in rabbits against the Artemia eIF-2 subunits. A casein kinase II activity was isolated from Artemia embryos that phosphorylates the beta-subunit of reticulocyte eIF-2, but specifically phosphorylates the alpha-subunit of eIF-2 preparations from several non-mammalian sources, including Artemia, yeast, and wheat germ embryos. Since this kinase phosphorylates a site distinct from that recognized by the heme-controlled repressor, and this phosphorylation does not alter the ability of Artemia eIF-2 to undergo nucleotide exchange, caution must be exercised when interpreting the significance of eIF-2(alpha) phosphorylation in non-mammalian cells.  相似文献   

18.
19.
T T Loh 《Life sciences》1983,32(8):915-920
Measurement of the distribution of the four species of transferrin, viz, apotransferrin, diferric transferrin and the two monoferric transferrin, before and after incubation of iron-rich rabbit transferrin with rabbit reticulocytes showed that not all transferrin released from the cells were in the form of apotransferrin. Instead, a mixture of all four species of the protein was released with apotransferrin and C-terminal monoferric transferrin being the major fractions. The buffer solution containing 125I-labelled transferrin showed a continuous gain in percentages in apotransferrin and C-terminal monoferric transferrin after each incubation with reticulocytes. The N-terminal monoferric transferrin, however, remained unchanged suggesting that in the process of transferrin uptake by cells, the diferric transferrin releases its iron from the acid-labile site at N-domain first before the other iron from the acid-stable site.  相似文献   

20.
The synthesis of the erythroid lipoxygenase, an enzyme which is of importance for the degradation of mitochondria during the maturation of reticulocytes to erythrocytes, was studied in reticulocytes from bone marrow and in density-separated fractions from peripheral blood of anemic rabbits. Lipoxygenase mRNA was enriched to about 75% by digestion of polysomes with protease K, poly(U)-Sepharose chromatography and repeated sucrose gradient centrifugation. From sucrose gradient centrifugation, electrophoresis and electron microscopy a molecular weight of about 10(6) was calculated. Synthesis of lipoxygenase is absent in erythroblasts, in very young reticulocytes obtained from bone marrow, or in the lightest fractions of reticulocytes from the peripheral blood. More mature blood reticulocytes show a considerable synthesis of the enzyme. The induction of the synthesis of the lipoxygenase seems to be initiated when reticulocytes have reached the peripheral blood. It is shown that lipoxygenase mRNA is present in reticulocytes as a translationally inactive free cytoplasmic messenger ribonucleoprotein (mRNP) particle. After deproteinization isolated mRNA obtained from masked mRNP codes for authentic lipoxygenase in a cell-free protein-synthesizing system of reticulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号