首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microplastics (MPs) are widespread in aquatic environments and have become a critical environmental issue in recent years due to their adverse impacts on the physiology, reproduction, and survival of aquatic animals. Exposure to MPs also has the potential to induce sub‐lethal behavioral changes that can affect individual fitness, but these effects are understudied. Many plastic additives introduced during the manufacture of MPs are known endocrine‐disrupting chemicals (EDCs) that mimic the action of natural hormones, alter sexual and competitive behavior, and impair reproductive success in fish. In addition, EDCs and other aquatic contaminants may adhere to MPs in the environment, the latter of which may serve as transport vectors for these compounds (i.e., the vector hypothesis). In this study, we staged territorial contests between control males, and males exposed to virgin MP particles or to MPs previously immersed in one of two environmentally relevant concentrations of 17‐alpha ethinyl estradiol (EE2; 5 ng/L and 25 ng/L) to evaluate the independent and synergistic effects of exposure to MPs and a common environmental estrogen on male–male aggression and competitive territory acquisition in a freshwater fish, Pimephales promelas. Short‐term (30 days) dietary exposure to MPs did not impair the ability of males to successfully compete for and obtain a breeding territory. Overall levels of aggression in control and exposed males were also similar across trial series. These results help to fill a critical knowledge gap regarding the direct and indirect (vector‐borne) effects of MPs on the reproductive behavior of aquatic vertebrates in freshwater systems.  相似文献   

2.
Humans and wildlife are exposed to numerous anthropogenic drugs and pollutants. Many of these compounds are hormonally active, and recent evidence suggests that the presence of these endocrine disruptors permanently alters normal development and physiology in a variety of vertebrate species. Here, we report on the effects of developmental exposure to two common estrogenic pollutants, bisphenol A and ethinyl estradiol on sexually dimorphic, non-reproductive behavior. Mice (Mus musculus domesticus) were exposed to environmentally relevant levels of these chemicals (2 and 200 microg/kg/day for bisphenol A and 5 microg/kg/day for ethinyl estradiol) throughout prenatal and early postnatal development. As adults, the animals were observed in a variety of tests measuring sexually dimorphic behaviors including short-term spatial memory (in a radial-arm maze and a Barnes maze) and anxiety (in an elevated-plus maze and a light/dark preference chamber). Developmental exposure to ethinyl estradiol was found to masculinize behavior in all of the assays used. Bisphenol A increased anxious behavior in a dose-dependent fashion but had no effect on spatial memory. These results indicate that non-reproductive, sexually dimorphic behavior is sensitive to endocrine disruption. In addition, these experiments suggest that both humans and wildlife are being exposed to levels of these endocrine disrupting compounds that are sufficient to disrupt the development of the nervous system and that may have permanent consequences on sexually dimorphic behaviors.  相似文献   

3.
Endocrine disrupting compounds (EDCs) are known to affect reproduction and development in marine invertebrates. In previous work, we have shown that developing sea urchin embryos were sensitive to estradiol and estrogenic EDCs at environmentally relevant concentrations in a tamoxifen-sensitive manner (Roepke et al. 2005. Aquat Toxicol 71:155-173). In this study, we report the effects of maternal exposure to EDCs on embryo sensitivity and regulation of an orphan steroid receptor in sea urchin eggs. Maternal exposures were conducted by injecting female Strongylocentrotus purpuratus sea urchins initiating oogenesis with two concentrations of estradiol, octylphenol, tributyltin and o, p-DDD for 8 weeks with an induced spawning before and after the injection cycle. Developing embryos were less sensitive to estradiol following maternal exposure to estradiol, octylphenol and DDD. The steroidogenesis inhibitor, spironolactone, and the aromatase inhibitor, formestane, affected normal sea urchin development with EC50 values of 18 and 2 microM, respectively. Binding of estradiol was demonstrated in homogenates supernatants of sea urchin embryos by filtration centrifugation and column chromatography, but saturation was not reached until 4-6 hr and was highly variable. Analysis of eggs from pre- and post-injection spawns using real-time Q-PCR for the mRNA of an orphan steroid receptor, SpSHR2, shows that receptor mRNA increased in eggs with estradiol, octylphenol and tributyltin but decreased with DDD. RIA showed that estradiol may be present during gastrulation. In summary, maternal exposure to estradiol and EDCs alters embryo sensitivity and regulates the expression of an orphan steroid receptor in the egg.  相似文献   

4.
Developmental exposure of turtles and other reptiles to endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE2, estrogen present in birth control pills), can induce partial to full gonadal sex-reversal in males. No prior studies have considered whether in ovo exposure to EDCs disrupts normal brain sexual differentiation. Yet, rodent model studies indicate early exposure to these chemicals disturbs sexually selected behavioral traits, including spatial navigational learning and memory. Thus, we sought to determine whether developmental exposure of painted turtles (Chrysemys picta) to BPA and EE2 results in sex-dependent behavioral changes. At developmental stage 17, turtles incubated at 26⁰C (male-inducing temperature) were treated with 1) BPA High (100 μg /mL), 2) BPA Low (0.01 μg/mL), 3) EE2 (0.2 μg/mL), or 4) vehicle or no vehicle control groups. Five months after hatching, turtles were tested with a spatial navigational test that included four food containers, only one of which was baited with food. Each turtle was randomly assigned one container that did not change over the trial period. Each individual was tested for 14 consecutive days. Results show developmental exposure to BPA High and EE2 improved spatial navigational learning and memory, as evidenced by increased number of times spent in the correct target zone and greater likelihood of solving the maze compared to control turtles. This study is the first to show that in addition to overriding temperature sex determination (TSD) of the male gonad, these EDCs may induce sex-dependent behavioral changes in turtles.  相似文献   

5.
The non-lethal effects of predation can significantly influence animal behavior and population composition. Research has often centered around prey response to predator exposure in the short term, but fewer studies have highlighted the effects of long-term predator exposures. In addition, studies of responses to predation risk are not always calibrated against the ecological history of predation risk in specific populations. We address these gaps by examining the effects of both long- and short-term predator exposure on the behavior of individuals from populations that have different ecological histories of predation risk. We exposed individuals from high-predation and low-predation populations of the live-bearing freshwater poeciliid, Heterandria formosa, to predators to assess changes in male reproductive behavior toward females. We also assessed longer-term reproductive responses by exposing male and female H. formosa to predators at a random time of day, every day, for 30 days. In the presence of a predator, in the short term, males changed the frequency of their behaviors and females varied in their concentration of cortisol, demonstrating immediate responses to the perceived risk. The magnitude of these changes was larger in the population without a long history of predator exposure. However, we found that males and females did not change their reproductive output when exposed to predators over longer periods of time, suggesting that individuals acclimatize to the level of predation risk they experience. These results also suggest that short-term variation in behavior or stress hormone responses should not be used as proxies for long-term responses or fitness effects. Future work should assess both short-term behavior and long-term responses while simultaneously considering the ecological history of populations.  相似文献   

6.
Environmental sex reversal (ESR) occurs when environmental factors overpower genetic sex-determining factors. The phenomenon of ESR is observed widely in teleost species, where it can be induced by exposing developing fish to endocrine disrupting chemicals (EDCs). EDC-induced ESR has been exploited by the aquaculture industry, while ecological and evolutionary models are also beginning to elucidate the potential roles that sex-reversed individuals play in influencing population dynamics. However, how EDC exposure affects individual fitness remains relatively unknown. To date, many experimental studies have induced sex reversal in fish and measured fitness-as indicated by related traits such as size, survival and gonadal somatic index (GSI), but the reported results vary. Here, we meta-analytically combine the results of 78 studies of induced ESR to gain insight into the fitness of sex-reversed individuals. Overall, our results suggest that the fitness of fish exposed to EDCs is reduced at the time of exposure, with exposed individuals having a smaller size and likely a smaller GSI. Given a period of non-exposure, fish treated with EDCs can regain a size equal to those not exposed, although GSI remains compromised. Interestingly, survival does not appear to be affected by EDC treatment. The published reports that comprise our dataset are, however, based on captive fish and the general small size resulting from exposure is likely to lead to reduced survival in the wild. Additionally, reduced fitness-related parameters are likely to be due to exposure to EDCs rather than ESR itself. We suggest that theoretical models of ESR should account for the fitness-related effects that we report. Whilst we are able to shed light on the physical fitness of EDC-exposed fish, the behaviour of such individuals remains largely untested and should be the focus of future experimental manipulation.  相似文献   

7.
Endocrine disrupting chemicals (EDCs) are a widely studied group of chemicals that interfere with the endocrinology of organisms. So far, few studies have demonstrated the effect of EDCs on the reproductive behavior of aquatic wildlife. Here we show that sand goby males' (Pomatoschistus minutus) success in mating competition greatly decreases after an exposure for 7 to 24 days to 17α-ethinyl estradiol (EE2, measured concentration 4 ng L− 1). The sand goby exhibits a polygynous mating system with male parental care, in which males compete for nest sites and females. The aim of this study was to test how EE2 exposure affects the ability of males to compete for breeding resources, i.e. nest sites and mates. First, EE2 exposed males competed over a nest site against a non-exposed, control male of the same size. Secondly, we examined male courtship behavior and female mate preferences for EE2 exposed males and similar-sized non-exposed, control males. In addition to the behavioral experiments we determined the zona radiata protein (Zrp) mRNA gene expression and measured morphometric indicators of sexual maturation. Our study revealed that EE2 treated males were not able to acquire or defend a nest site. Additionally, EE2 treated males spent significantly less time in active courtship and nest leading behavior than control males. As a result, females clearly preferred to mate with control males. However, we found no significant differences in Zrp mRNA expression or the morphometric indicators between treatments. Our study illustrates that exposure to this EDC can greatly reduce the chances of an individual reproducing successfully. Moreover, it demonstrates that severe behavioral effects can be seen before any effects are detectable at the molecular or morphometric level.  相似文献   

8.
The aims of this study were to test whether the metabolism, behavioural traits, growth and survival under predation of a fish species phenotypically changed under predation threat with the particular emphasis on whether short-time predator exposure would amplify the relationships between metabolic rate and behavioural traits and their fitness consequences (growth and survival). We found that Chinese bream under predation threat for 20 days exhibited a lower specific growth rate (SGR), feeding rate (FR) and feeding efficiency (FE) but a higher standard metabolic rate (SMR) and survival when encountering predators compared to the bream in the no-predator group. Both activity and boldness showed no correlation to SMR in the no-predator group, while it was vice versa in the predator group according to Pearson correlation. It thus demonstrated that short-time predator exposure can mediate the relationships between metabolism and behavioural traits, suggesting that predation may play an important evolutionary role in modifying intraspecific behavioural differences via metabolism. However, no significant effect of predator treatment acted on relationships between behaviour traits and SMR according to ANCOVA, which possibly due to the small sample size of this study. Additionally, the SMR of both groups was positively correlated with survival under predation, whereas the relationships between SMR and fitness cost such as growth and survival are rather complicated and need further investigation.  相似文献   

9.
C Healy  J E Milmore  G Guideri 《Life sciences》1991,48(20):1931-1936
To assess the effects of ethinyl estradiol on the incidence of death in ventricular fibrillation induced by isoproterenol in DOCA-salt pretreated rats we implanted male and female rats simultaneously with a 20 mg DOCA pellet and pellets containing either ethinyl estradiol or vehicle (wax). Rats drank saline after implantation. After 6 days rats were challenged with a single, sc dose of 150 micrograms of isoproterenol. The average daily dose of estradiol per rat was estimated on the basis of the quantity of pellet lost during 6 days. In male rats the average daily dose of 61.2 +/- 20.2 micrograms/rat of ethinyl estradiol decreased the incidence of mortality by 80%, from 73.3% (11/15) in vehicle treated to 13.3% (2/15) in estradiol treated rats. Death occurred within 19.2 +/- 8.0 minutes from the injection of isoproterenol and was due to ventricular fibrillation. Serum levels of magnesium and potassium were comparable in the two groups both before and after isoproterenol. Isoproterenol induced death in 9 of 11 DOCA-salt pretreated, ovariectomized rats within 22.3 +/- 9.8 minutes. Only 3 of 11 DOCA-salt ovariectomized rats receiving the average daily dose of 28.4 +/- 12.1 micrograms/rat of ethinyl estradiol died. None of 10 ovariectomized untreated rats died from isoproterenol challenge. Serum levels of magnesium and potassium were comparable in the estradiol and vehicle treated groups. The average daily dose of 2.8 +/- 0.42 micrograms/rat of ethinyl estradiol elicited uterine growth but did not influence the incidence of mortality, since 9 out of 16 and 10 out of 16 rats died following isoproterenol in vehicle and estradiol treated DOCA-salt ovariectomized rats. We conclude that only pharmacological doses of estradiol exert protective effects against DOCA-salt induced myocardial sensitization to isoproterenol and that this protection is not associated with relevant changes in serum potassium or magnesium.  相似文献   

10.
Determining the fitness consequences of antipredation behavior   总被引:13,自引:4,他引:13  
Any animal whose form or behavior facilitates the avoidanceof predators or escape when attacked by predators will havea greater probability of surviving to breed and therefore greaterprobability of producing offspring (i.e., fitness). Althoughin theory the fitness consequences of any antipredation behaviorcan simply be measured by the resultant probability of survivalor death, determining the functional significance of antipredationbehavior presents a surprising problem. In this review we drawattention to the problem that fitness consequences of antipredationbehaviors cannot be determined without considering the potentialfor reduction of predation risk, or increased reproductive output,through other compensatory behaviors than the behaviors understudy. We believe we have reached the limits of what we canever understand about the ecological effects of antipredationbehavior from empirical studies that simply correlate a singlebehavior with an apparent fitness consequence. Future empiricalstudies must involve many behaviors to consider the range ofpotential compensation to predation risk. This is because antipredationbehaviors are a composite of many behaviors that an animal canadjust to accomplish its ends. We show that observed variationin antipredation behavior does not have to reflect fitness andwe demonstrate that few studies can draw unambiguous conclusionsabout the fitness consequences of antipredation behavior. Lastly,we provide suggestions of how future research should best betargeted so that, even in the absence of death rates or changesin reproductive output, reasonable inferences of the fitnessconsequences of antipredation behaviors can be made.  相似文献   

11.
The behavior of an individual within a social aggregation profoundly influences behavior and physiology of other animals within the aggregation in such a way that these social interactions can enhance reproductive success, survival and fitness. This phenomenon is particularly important during the breeding season when males and female must synchronize their reproductive efforts. We examined whether exposure to conspecific social cues can elevate sex steroid levels, specifically estradiol and androgens, in female túngara frogs (Physalaemus pustulosus). We compared plasma estradiol and androgen concentrations in wild-caught females before and after exposure to either natural mate choruses or random tones. After exposure to mate choruses for 10 consecutive nights, estradiol concentrations were significantly elevated whereas there was no significant elevation in estradiol concentrations in the group of females exposed to random tones for 10 nights. Plasma androgen concentrations were not significantly changed after exposure to either natural mate choruses or random tones for 10 consecutive nights. Social modulation of estradiol concentrations may be important in maintaining a female's reproductive state while males are chorusing. To our knowledge, this is the first study to demonstrate social regulation of estradiol concentration in female anurans.  相似文献   

12.
Woodley CM  Peterson MS 《Oecologia》2003,136(1):155-160
An organism's daily activities are affected by predation and predation risk that have behavioral and physiological costs, which translate into long-term population and community consequences. We tested the hypothesis that the perception of predation risk from sand seatrout, Cynoscion arenarius, affects the behavior, and immediate and intermediate physiological responses of longnose killifish, Fundulus majalis. We further hypothesized that prey responses change if prey are buffered by artificial submerged aquatic vegetation (SAV), a potential refuge from predators. Experiments were conducted to quantitatively estimate the behavior, plasma cortisol (PC) concentration, mass-specific oxygen consumption, and short-term growth rate changes relative to full, partial, and no visual exposure to the predator. The partial visual exposure treatment involved the use of artificial SAV. Our results indicate that there are significant behavior and physiological responses of longnose killifish to predation threat. Longnose killifish in the full visual and partial exposure treatments displayed different behaviors than the control treatments by shifting towards the rear of the aquaria. In addition, longnose killifish in the full visual exposure compared to the partial exposure and the control treatments responded by exhibiting an elevation of PC and mass-specific oxygen consumption rate, and through decreased short-term growth. These responses were less intense in the partial exposure, when artificial SAV was present. The significance of this study is that it examines a suite of responses from cellular to the whole-organism level as they are affected by predation threat and modified by the presence or absence of artificial SAV.  相似文献   

13.
The perception of predation risk could affect prey phenotype both within and between generations (via parental effects). The response to predation risk could involve modifications in physiology, morphology, and behavior and can ultimately affect long‐term fitness. Among the possible modifications mediated by the exposure to predation risk, telomere length could be a proxy for investigating the response to predation risk both within and between generations, as telomeres can be significantly affected by environmental stress. Maternal exposure to the perception of predation risk can affect a variety of offspring traits but the effect on offspring telomere length has never been experimentally tested. Using a live‐bearing fish, the guppy (Poecilia reticulata), we tested if the perceived risk of predation could affect the telomere length of adult females directly and that of their offspring with a balanced experimental setup that allowed us to control for both maternal and paternal contribution. We exposed female guppies to the perception of predation risk during gestation using a combination of both visual and chemical cues and we then measured female telomere length after the exposure period. Maternal effects mediated by the exposure to predation risk were measured on offspring telomere length and body size at birth. Contrary to our predictions, we did not find a significant effect of predation‐exposure neither on female nor on offspring telomere length, but females exposed to predation risk produced smaller offspring at birth. We discuss the possible explanations for our findings and advocate for further research on telomere dynamics in ectotherms.  相似文献   

14.
Biotic and abiotic factors may individually or interactively disrupt plant–pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant–pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness. Our findings indicate that predation risk and an increase in precipitation independently reduced plant fitness (i.e., seed set) by decreasing flower visitation. Predation risk reduced pollinator visitation and richness, and altered species composition of pollinators. Additionally, an increase in precipitation was associated with lower flower visitation and pollinator richness but did not alter pollinator species composition. However, maximum daily temperature did not affect any component of the pollinator assemblage or plant fitness. Our results indicate that biotic and abiotic drivers have different impacts on pollinator behavior and diversity with consequences for plant fitness components. Even small variation in precipitation conditions promotes complex and substantial cascading effects on plants by affecting both pollinator communities and the outcome of plant–pollinator interactions. Tropical communities are expected to be highly susceptible to climatic changes, and these changes may have drastic consequences for biotic interactions in the tropics.  相似文献   

15.
Endocrine disruptors: present issues, future directions   总被引:12,自引:0,他引:12  
A variety of natural products and synthetic chemicals, known collectively as endocrine-disrupting compounds (EDCs), mimic or interfere with the mechanisms that govern vertebrate reproductive development and function. At present, research has focused on (i) the morphological and functional consequences of EDCs; (ii) identifying and determining the relative potencies of synthetic and steroidal compounds that have endocrine-disrupting effects; (iii) the mechanism of action of EDCs at the molecular level; and (iv) the recognition that in "real life," contamination usually reflects mixtures of EDCs. Future research must examine (i) the interactive nature of EDCs, particularly whether the threshold concept as developed in traditional toxicological research applies to these chemicals; (ii) when and how EDCs act at the physiological level, particularly how they may organize the neural substrates of reproductive physiology and behavior; (iii) the various effects these compounds have on different species, individuals, and even tissues; and (iv) how adaptations may evolve in natural populations with continued exposure to EDCs. Several predictions are offered that reflect these new perspectives. Specifically, (i) the threshold assumption will be found not to apply to EDCs because they mimic the actions of endogenous molecules (e.g., estrogen) critical to development; hence, the threshold is automatically exceeded with exposure. (ii) Behavior can compound and magnify the effects of EDCs over successive generations; that is, bioaccumulated EDCs inherited from the mother not only influence the morphological and physiological development of the offspring but also the offsprings' reproductive behavior as adults. This adult behavior, in turn, can have further consequences on the sexual development of their own young. (iii) The sensitivity of a species or an individual to a compound is related to species (individual)-typical concentrations of circulating gonadal steroid hormones. Related to this is the recent finding that alternate forms of the putative receptors are differentially distributed, thereby contributing to the different effects that have been observed. (iv) Except in extraordinary situations, populations often continue to exist in contaminated sites. One possible explanation for this observation that needs to be considered is that animals can rapidly adapt to the nature and level of contamination in their environment. It is unlikely that successive generations coincidentally become insensitive to gonadal steroid hormones fundamentally important as biological regulators of development and reproduction. Rather, adaptive alterations in the genes that encode steroid receptors may occur with chronic exposure to EDCs, allowing the sex hormone receptor to discriminate natural steroids from EDCs.  相似文献   

16.
Lipophilicity (log P) of the drug plays an important role when drug reaches in the critical reaction site, i.e., active site cum receptors where the major constituent is lipid moieties. The drug molecule may be responsible for altering the lipid constituents, which is measured in terms of phosphorus content and can be explained by their fatty acid changes that are linked with biological effect of the drug. Having considered the lipophilicity of ethinyl estradiol (log P = 3.67), its interactions with the whole lipid of goat blood have been investigated along with fatty acid changes and lipid peroxidation phenomena. There was significant loss of phosphorus content of phospholipid and change of fatty acid constituents of whole lipid. This may be ascribed to binding affinity of ethinyl estradiol with lipid constituents in blood. Lipid binding potential of the drug may have role in its therapeutic effect. The peroxidation induced by drug has been quantitatively measured along with its suppression by using antioxidant. The results reveal that ethinyl estradiol caused significant extent of lipid peroxidation. Ascorbic acid, a promising antioxidant could significantly reduce drug induced lipid peroxidation.  相似文献   

17.
Oral contraceptive pills (OCPs) are a popular contraception method. Currently, lower-dose ethinyl estradiol formulations are most commonly prescribed, although they have been linked to increased arterial vascular risk. The aim of this study was to investigate endothelial function in healthy young women using lower-dose ethinyl estradiol OCPs. We examined flow-mediated, endothelium-dependent and nitroglycerin-mediated, endothelium-independent vasodilation of the brachial artery, comparing two doses of ethinyl estradiol/levonorgestrel OCPs in 15 healthy young women on two study days: once during the active phase and once during the placebo phase of an OCP cycle. Group low dose (LD) (n=7) active pills contained 150 microg levonorgestrel/30 microg ethinyl estradiol versus Group very low dose (VLD) (n=8) with 100 microg levonorgestrel/20 microg ethinyl estradiol. Endothelium-dependent vasodilation was lower during the active phase in Group VLD (5.33 +/- 1.77% vs. 7.23 +/- 2.60%; P=0.024). This phase difference was not observed in Group LD (8.00 +/- 0.970% vs. 7.61 +/- 1.07%; P=0.647). Endothelium-independent vasodilation did not differ between phases in either group. Finally, we measured endothelium-dependent vasodilation in two additional women who received 10 microg of unopposed ethinyl estradiol. Endothelium-dependent vasodilation was increased by unopposed ethinyl estradiol compared with the placebo phase (10.88 +/- 2.34% vs. 6.97 +/- 1.83%). These results suggest that levonorgestrel may antagonize the activity of ethinyl estradiol. Thus both the progestin type and estradiol dose need to be considered when assessing arterial vascular risk of OCP use in women.  相似文献   

18.
Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.  相似文献   

19.
The risk of both predation and food level has been shown to affect phenotypic development of organisms. However, these two factors also influence animal behavior that in turn may influence phenotypic development. Hence, it might be difficult to disentangle the behavioral effect from the predator or resource‐level effects. This is because the presence of predators and high resource levels usually results in a lower activity, which in turn affects energy expenditure that is used for development and growth. It is therefore necessary to study how behavior interacts with changes in body shape with regard to resource density and predators. Here, we use the classic predator‐induced morphological defense in fish to study the interaction between predator cues, resource availability, and behavioral activity with the aim to determine their relative contribution to changes in body shape. We show that all three variables, the presence of a predator, food level, and activity, both additively and interactively, affected the body shape of perch. In general, the presence of predators, lower swimming activity, and higher food levels induced a deep body shape, with predation and behavior having similar effect and food treatment the smallest effect. The shape changes seemed to be mediated by changes in growth rate as body condition showed a similar effect as shape with regard to food‐level and predator treatments. Our results suggests that shape changes in animals to one environmental factor, for example, predation risk, can be context dependent, and depend on food levels or behavioral responses. Theoretical and empirical studies should further explore how this context dependence affects fitness components such as resource gain and mortality and their implications for population dynamics.  相似文献   

20.
There is compelling evidence on a global scale for compromised growth and reproduction, altered development, and abnormal behaviour in feral fish that can be correlated or in some cases causally linked with exposure to endocrine disrupting chemicals (EDCs). Attributing cause and effect relationships for EDCs is a specific challenge for studies with feral fish as many factors including food availability, disease, competition and loss of habitat also affect reproduction and development. Even in cases where there are physiological responses of fish exposed to EDCs (e.g., changes in reproductive hormone titres, vitellogenin levels), the utility of these measures in extrapolating to whole animal reproductive or developmental outcomes is often limited. Although fish differ from other vertebrates in certain aspects of their endocrinology, there is little evidence that fish are more sensitive to the effects of EDCs. Therefore, to address why endocrine disruption seems so widespread in fish, it is necessary to consider aspects of fish physiology and their environment that may increase their exposure to EDCs. Dependence on aquatic respiration, strategies for iono-osmotic regulation, and maternal transfer of contaminants to eggs creates additional avenues by which fish are exposed to EDCs. This paper provides an overview of responses observed in feral fish populations that have been attributed to EDCs and illustrates many of the factors that need consideration in evaluating the risks posed by these chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号