首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A well-known protective effect of aminooxyacetic acid against thiosemicarbazide convulsions was confirmed; it was shown that a similar, although somewhat weaker activity, was exerted by sodium hydroxybutyrate. Surprisingly, the effect of aminooxyacetic acid was diminished by sodium hydroxybutyrate. Sodium hydroxybutyrate in combination with aminooxyacetic acid decreased the protective activity of the latter against thiosemicarbazide convulsions and diminished the extent of GABA accumulation characteristic of aminooxyacetic acid action. This effect is attributed to the competition between the aminooxyacetic acid, sodium hydroxybutyrate and GABA for alpha-ketoglutarate-GABA-transaminase and possible for the GABA-ergic receptor.  相似文献   

2.
The spectra of pharmacological effects of ethanol and the benzodiazepines show a degree of overlap. Neurophysiological and neurochemical evidence indicates that both ethanol and benzodiazepines facilitate inhibitory neurotransmission mediated by GABA. Diazepam has been reported to inhibit both the tremor and increase of cerebellar cyclic GMP caused by harmaline by a mechanism postulated to involve enhancement of GABA-mediated neurotransmission in the cerebellum. Because of the similarities between ethanol and benzodiazepines, the effects of ethanol on harmaline-induced tremor and increase of cerebellar cyclic GMP were studied. Ethanol inhibited harmaline-induced tremor at doses as low as 0.1 g/kg. At this low dose, however, a dissociation between inhibition of harmaline tremor and inhibition of the harmaline-induced increase of cerebellar cyclic GMP was observed.  相似文献   

3.
Abstract— Levels of glucose, lactate, GABA and cyclic nucleotides were examined in discrete layers of the cerebellum and cerebral cortex of mice following treatment with the anticonvulsant, sodium valproate, and/or the convulsant, isoniazid. The concentrations of the metabolites were essentially uniform among the layers of each region, whether from control or from drug-treated mice. Metabolite concentrations in the isoniazid-treated mice were determined either 30 min after administration (preconvulsive state), or immediatley after the onset of seizures. Glucose and lactate, two markers of energy status in the brain, were only minimally affected by drug treatment. However, the levels of GABA and cyclic nucleotides were markedly different from control values in the drug-treated animals. In the preconvulsive state, GABA levels in cerebellar layers were depressed and the cyclic nucleotides were elevated in most layers of both regions. At the onset of seizures, the reduction of GABA and the elevation of cyclic AMP in both regions was more pronounced than during the preconvulsive state. While the concentration of cyclic GMP remained elevated in the cerebellar layers at the onset of seizures, the level in the cerebral cortex returned to control values. Valproate elevated GABA in all the layers of both regions and decreased the cyclic GMP in the cerebellar layers. Generally, when valproate was administered in combination with isoniazid, it dampened the isoniazid induced changes in the metabolites. The events leading up to a seizure as well as those that sustain it may be reflected by the disparate responses of the metabolites in the cerebellum and cerebral cortex.  相似文献   

4.
Higher GABA Concentrations in Fallopian Tube Than in Brain of the Rat   总被引:11,自引:5,他引:6  
Abstract: The GABA content was determined simultaneously in two peripheral organs, i.e., ovary and Fallopian tube. Moreover, the effects of inhibitors of glutamate decarboxylase or γ-aminobutyrate transaminase (GABA-T) on the GABA concentrations of the two organs were examined, to point out similarities and differences between central and peripheral pathways of GABA biosynthesis and degradation. In ovary, GABA concentration was found to be about 30% of that in total brain tissue. Furthermore, isoniazid and thiosemicarbazide caused significant reduction of GABA levels in peripheral organs. In contrast to the CNS, aminooxyacetic acid failed to increase, but even produced a significant diminution in peripheral GABA content. Gabaculine did not change GABA levels. In conclusion, it has been demonstrated for the first time that a peripheral organ, i.e. fallopian tube, contained higher GABA concentrations than the CNS. On the other hand, in the organs examined GABA seemed to be synthesized similarly, but metabolized by a pathway different from that in the brian.  相似文献   

5.
Abstract— The effect of diazepam and pentobarbital on γ-aminobutyric acid (GABA) levels, the aminooxyacetic acid (AOAA)-induced accumulation of GABA, and the in vitro activity of l -glutamate 1-carboxyl-lyase (EC 4.1.1.15) [GAD] were studied in various regions of rat brain. Diazepam increased GABA levels in the substantia nigra, diminished the AOAA-induced accumulation of GABA in the caudate nucleus, cingulate, parietal and entorhinal cortex and had no effect on GABA accumulation in the pyriform and cerebellar cortex. After pentobarbital, GABA levels were elevated in the caudate nucleus but decreased in the parietal and pyriform cortex; the AOAA-induced accumulation of GABA also diminished in all cortical regions studied. No correlation was found between the apparent changes in GABA synthesis, as estimated by accumulation after inhibition of 4-aminobutyrate-2-oxoglu-tarate (EC 2.6.1.19) [GABA-T] with AOAA, and the changes in GABA levels induced by these drugs. The reduction in AOAA-induced GABA accumulation after diazepam and pentobarbital treatment was most pronounced in regions which showed the greatest accumulation of GABA after AOAA administration. Neither diazepam nor pentobarbital administration affected the activity of GAD in homogenates of cingulate cortex. Chlorpromazine, at a dose which decreased spontaneous activity, enhanced the AOAA-induced GABA accumulation in the cingulate cortex, suggesting that drug-induced sedation is not necessarily associated with decreased GABA synthesis. While regional differences were observed in the effects of diazepam and pentobarbital on GABA synthesis, both agents appear to inhibit GABA synthesis in vivo and both do so, in at least some brain areas, at subsedative doses.  相似文献   

6.
In this study, we have analyzed the role of cyclic AMP (cAMP) as the mediator of the decrease in action potential duration induced by diazepam. Diazepam (1-100 microM) reduced, in a dose-dependent manner, the duration of intracellular action potential recorded in the papillary muscle obtained from the right ventricle of the guinea pig heart. This effect was mimicked by the analog of cyclic AMP, 8-Br-cAMP (100 microM), but not by gamma-amino-butyric acid (GABA). Also, the selective antagonist of the benzodiazepine receptors, flumazenil did not modify the effect of diazepam. The diazepam-induced shortening of action potential duration was partially antagonized by the inhibitor of cAMP synthesis carbachol (1 microM) or the blocker of the cAMP-dependent protein kinase A, Rp-cAMP[S] (1 microM). These results indicate that cyclic AMP is involved in the diazepam-induced shortening of the action potential duration of the guinea pig papillary muscle.  相似文献   

7.
The effects of pretreatment of mice with some drugs which modify GABAergic neurotransmission on the convulsions and cerebellar cyclic nucelotide level changes induced by the subsequent intracerebroventricular administration of 4-isopropyl-2,6,7-trioxa-1-phosphabicyclo(2,2,2)octane-1-oxide (IPTBO) have been studied.Muscimol, pentobarbitone and diazepam reduced the number of animals convulsing and prolonged the time to onset of convulsions in those animals which did, whereas baclofen and γ-acetylenic GABA had no effect on the number of animals convulsing but did prolong seizure latency. All the drugs except baclofen prevented the increase in cyclic GMP concentrations following IPTBO treatment. Pentobarbitone, baclofen and γ-acetylenic GABA caused significant increases in the concentrations of cyclic AMP, whereas there was no marked effect of treatment with IPTBO alone on the levels of this nucleotide: however, IPTBO reduced the extent of the increases produced by the drugs.The results are discussed in the context of the mechanism of action of IPTBO and the involvement of GABAergic neurotransmission in convulsant and anticonvulsant activities.  相似文献   

8.
The bilateral intrastriatal injection of D-Ala2-Met-Enkephalinamide (DALA) at doses of ranging from 12 to 50 μg decreased cyclic-GMP content in the cerebellum and produced catalepsy. These effects were prevented by naltrexone, an opiate receptor antagonist but not by apomorphine, a dopamine agonist. The bilateral injection of DALA in the cerebellum, and substantia nigra neither decreased cerebellar cyclic GMP content nor produced catalepsy. The bilateral injection of DALA (20 ug) into the ventromedial thalamic nuclei caused marked catalepsy but failed to decrease cerebellar cyclic GMP. The results suggest that the effect of DALA on cGMP can be differentiated from the cataleptic response and that it is mediated by an action on opioid receptors located in the striatum, beyond DA receptors.  相似文献   

9.
A study was made of the action of diazepam on the effects of the gamma-aminobutyric acid (GABA) applied electrophoretically to the neurons of the sensory-motor rabbit cortex. It was shown that diazepam intensified the depressive action of GABA on the spontaneous neuronal activity and the prolonging action of GABA on the duration of the inhibitory phase in the neuron responses to the afferent and direct stimulation of the cortex. Diazepam failed to alter the neuron response to glycine, glutamate and acetylcholine applied microelectrophoretically. It is supposed that diazepam increased the sensitivity of the receptors of the post-synaptic membrane of the neuron to GABA.  相似文献   

10.
The study was centered on the changes in the amino acid content of nerve endings (synaptosomes) induced by drugs that alter the metabolism of glutamate or gamma-aminobutyric acid (GABA), and that possess convulsant or anticonvulsant properties. The onset of seizures induced by various convulsant agents was associated with a decreased content of GABA and an increased content of glutamate in synaptosomes. The concurrent administration of pyridoxine prevented both the biochemical changes and the convulsions. The administration of gabaculine to mice resulted in large increases in the GABA content of synaptosomes that were counteracted by decreases in glutamate, glutamine, and aspartate levels such that the total content of the four amino acids remained unchanged. The administration of aminooxyacetic acid (0.91 mmol/kg) resulted initially in seizure activity, but subsequently in an anticonvulsant action. No simple relationship existed between the excitable state of the brain induced by aminooxyacetic acid and the changes in the synaptosomal levels of any of the amino acid transmitters. A hypothesis was, however, formulated that explained the convulsant-cum-anticonvulsant action of aminooxyacetic acid on the basis of compartmentation of GABA within the nerve endings.  相似文献   

11.
Abstract: The accumulation of γ -aminobutyric acid (GABA) after inhibition of GABA-T (4-aminobutyrate: 2-oxoglutamate aminotransferase, EC 2.6.1.19) by various doses of aminooxyacetic acid (AOAA) and gabaculine was studied in four different regions of the mouse brain. The dose-response curve for GABA accumulation after treatment with AOAA was linear up to 10 mg/kg i.p., and then leveled off. The increase in GABA accumulation after gabaculine treatment was linear up to 100 mg/kg i.p. No further increase was observed with doses up to 300 mg/kg i.p. The selectivity of both GABA-T inhibitors was assessed by measuring their effects on the content of free amino acids in mouse brain. Apart from the substantial increase in the GABA concentration, there were significant decreases in the content of glutamic acid, aspartic acid, alanine and glutamine, and an increase in ornithine content after administration of gabaculine. The same changes in amino acid content were observed after treatment with AOAA, but the level of lysine was also increased and the change in alanine level was biphasic. All these changes, however, were very small compared with the large increase in GABA level. A method for estimating the rate of the GABA turnover in vivo by measuring the initial rate of GABA accumulation after administration of AOAA or gabaculine is proposed, and the validity of the two techniques is discussed. The effect of diazepam on GABA levels and on the gabaculine-induced accumulation of GABA was studied. The results obtained with diazepam show that this method can provide valuable insight into the effects of drugs on GABAergic mechanisms in vivo.  相似文献   

12.
In the cerebellum, infusion of NMDA (200 microM) for 20 min evoked a marked (200%) increase of extracellular cyclic GMP (cGMP) levels. The selective GABA(A) receptor agonist muscimol (0.01-100 microM) was able to counteract the NMDA effect with an EC(50) of 0.65 microM; the inhibitory effect of muscimol (10 microM) was prevented by bicuculline (50 microM). Diazepam (10 microM) significantly potentiated the muscimol (1 microM) inhibition; furthermore, when coinfused with 0.1 microM muscimol (a concentration not affecting, on its own, the cGMP response to NMDA), diazepam (10 microM) reduced the NMDA effect. Similar results were obtained with zolpidem (0.1-1 microM). Finally, local infusion of the benzodiazepine site antagonist flumazenil (10 microM), together with muscimol and diazepam, almost completely restored the effect of NMDA on extracellular cGMP levels. It is concluded that GABA(A) receptors potently control the NMDA/nitric oxide/cGMP pathway in the cerebellum in vivo. In terms of the alpha subunit composition, we can deduce that the cerebellar GABA(A) receptor does not contain alpha(6) or beta(4) subunits because it is diazepam-sensitive. Moreover, the observation that zolpidem is active at a rather low concentration, in combination with localization studies present in the literature, tend to exclude the presence of alpha(5) subunits in the receptor composition and suggest the involvement of an alpha(1) subunit.  相似文献   

13.
Cultures of dissociated cerebella from 7-day-old mice were maintained in vitro for 1-13 days. GABA biosynthesis and degradation were studied during development in culture and pharmacological agents were used to identify the enzymes involved. The amount of GABA increased, whereas that of glutamate was unchanged during the first 5 days and both decreased thereafter. The presence of aminooxyacetic acid (AOAA, 10 microM) which inhibits transaminases and other pyridoxal phosphate dependent enzymes including GABA-transaminase (GABA-T), in the culture medium caused an increase in the intracellular amount of GABA and a decrease in glutamate. The GABA content was also increased following exposure to the specific GABA-T inhibitor gamma-vinyl GABA. From day 6 in culture (day 4 when cultured in the presence of AOAA) GABA levels in the medium were increased compared to that in medium from 1-day-old cultures. Synthesis of GABA during the first 3 days was demonstrated by the finding that incubation with either [1-(13)C]glucose or [U-(13)C]glutamine led to formation of labeled GABA. Synthesis of GABA after 1 week in culture, when the enzymatic machinery is considered to be at a more differentiated level, was shown by labeling from [U-(13)C]glutamine added on day 7. Altogether the findings show continuous GABA synthesis and degradation throughout the culture period in the cerebellar neurons. At 10 microM AOAA, GABA synthesis from [U-(13)C]glutamine was not affected, indicating that transaminases are not involved in GABA synthesis and thus excluding the putrescine pathway. At a concentration of 5 mM AOAA GABA labeling was, however, abolished, showing that glutamate decarboxylase, which is inhibited at this level of AOAA, is responsible for GABA synthesis in the cerebellar cultures. In conclusion, the present study shows that GABA synthesis is taking place via GAD in a subpopulation of the cerebellar neurons, throughout the culture period.  相似文献   

14.
Abstract: [3H]Diazepam and [3H]flunitrazepam ([3H]FNP) binding to washed and frozen synaptosomal membranes from rat cerebral cortex were compared. In Tris-citrate buffer, γ -aminobutyric acid (GABA) and NaCl both increased [3H]diazepam binding more than [3H]FNP binding. GABA and pentobarbital both enhanced this effect of NaCl. Because of the extremely rapid dissociation of [3H]diazepam in the absence of NaCl and GABA, the Bmax (maximal binding capacity) was smaller by the filtration assay than by the centrifugation assay. [3H]FNP, which dissociates more slowly, had the same Bmax in both assays. [3H]Diazepam association had two components, and was faster than [3H]FNP association. [3H]Diazepam dissociation, which also had two components, was faster than that of [3H]FNP, and also had a greater fraction of rapidly dissociating species. [3H]FNP dissociation was similar when initiated by diazepam, flunitrazepam, clonazepam, or Ro15-1788, which is a benzodiazepine antagonist. [3H]Diazepam dissociation with Ro15-1788, flunitrazepam, or clonazepam was slower than with diazepam. GABA and NaCl, but not pentobarbital, increased the percentage of slowly dissociating species. This effect of NaCl was potentiated by GABA and pentobarbital. The results support the cyclic model of benzodiazepine receptors existing in two interconvertible conformations, and suggest that, distinct from their binding affinity, some ligands (like flunitrazepam) are better than others (like diazepam) in inducing the conversion of the receptor to the higher-affinity state.  相似文献   

15.
—Guanosine 3′,5’cyclic monophosphate (cyclic GMP) levels in incubated slices of mouse cerebellum are increased 10-fold by glutamate and two-to three-fold by glycine or γ-aminobutyric acid (GABA). Glutamate also produces a 10-fold increase in adenosine 3′,5’cyclic monophosphate (cyclic AMP) in the same tissue. However, GABA decreases cyclic AMP levels 30-40 per cent, and glycine produces only a transient 50 per cent accumulation of this cyclic nucleotide. Theophylline slightly augments the accumulation of cyclic GMP produced by all three amino acids but markedly attenuates the accumulation of cyclic AMP produced by glutamate. In the absence of Ca2+, none of the three amino acids has any effect on cyclic GMP levels, and glutamate produces only a 50 per cent rise in cyclic AMP levels. The decrease of cyclic AMP levels produced by GABA is not affected by theophylline or by the absence of Ca2+. These data suggest an involvement of both cyclic GMP and cyclic AMP in the neurochemical actions of glutamate, GABA and glycine.  相似文献   

16.
Abstract— The GABA-elevating agents, aminooxyacetic acid, hydrazine, and hydroxylamine, all possessed anticonvulsant properties, although to a widely varying degree. Aminooxyacetic acid was the most efficacious in delaying drug-induced seizures in mice whereas hydroxylamine brought about only a slight delay in the onset of seizures. The anticonvulsant action was observed against various convulsant agents regardless of whether the convulsant mechanism might involve a deranged GABA metabolism (allylglycine, isonicotinic acid hydrazide, hydrazine), an interference with GABA function (picrotoxin) or some other mechanism (pentylenetetrazol). The anticonvulsant action was not related in a simple manner to either GABA levels or glutamic acid decarboxylase (GAD) activities but the anomalous situation whereby seizures occurred when the GABA content of brain was above normal could be resolved on the basis of an expression which included changes in both GABA levels and GAD activity. The possibility was proposed that the anticonvulsant action of aminooxyacetic acid involved two separate mechanisms.  相似文献   

17.
Abstract: The intramuscular administration of L-cycloserine, gabaculine, and aminooxyacetic acid caused significant, time-dependent increases in the γ-aminobutyric acid (GABA) content of both whole brain and synaptosomalenriched preparations obtained from the tissue, a linear relationship being observed between the two parameters. In contrast, the administration of hydrazine resulted in a large increase in whole brain GABA level, with little change in the synaptosomal GABA content. The key factor in these different responses appeared to be the degree of inhibition of glutamic acid decarboxylase by the drugs. Pretreatment of mice with the GABA-elevating agents resulted in a delay in the onset of seizures, which was related directly to the increase in synaptosomal GABA content. Although the seizures were delayed, they occurred while the GABA content of nerve endings (synaptosomes) was above that in preparations from untreated animals. The decrease in GABA content at the onset of seizures, expressed as a percentage of the level at the time of injection of the convulsant agent, was, however, reasonably constant. A hypothesis to explain these results is proposed.  相似文献   

18.
As measured by a highly specific radioimmunoassay, diazepam treatment of rats results in a rapid decrease of enkephalin levels in the striatum whilst these are increased in the hypothalamus. This striatal effect is mimicked by the GABA agonist muscimol and the GABA-transaminase inhibitor aminooxyacetic acid (AOAA). It is furthermore blocked by the GABA antagonist bicuculline and is thus GABAergic in nature. Further, the diazepam effect upon striatal enkephalin levels is antagonized by low doses of naloxone (1.0 mg/kg, i.p.). In the hypothalamus, diazepam effects were neither mimicked nor modulated by any of a variety of agonists and antagonists tested, suggesting that benzodiazepine effects on enkephalin levels in this structure are not mediated via a GABAergic mechanism.  相似文献   

19.
In this study, we attempted to clarify the mechanisms mediating cyclosporine-evoked convulsions. Cyclosporine (50 mg/kg, i.p.) significantly enhanced the intensity of convulsions induced by bicuculline (GABA receptor antagonist), but not those induced by strychnine (glycine receptor antagonist), N-methyl-D-aspartic acid, quisqualic acid or kainic acid (glutamate receptor agonists). Bicuculline plus cyclosporine-induced convulsions were significantly suppressed by an activation of GABAergic transmission with diazepam, phenobarbital and valproate. The GABA turnover estimated by measuring aminooxyacetic acid-induced GABA accumulation in the mouse brain was significantly inhibited by cyclosporine (50 mg/kg, i.p.). When cultured rat cerebellar granule cells were exposed to 1 microM cyclosporine for 24 hr, the specific [3H]muscimol (10 nM) binding to intact granule cells decreased to 53% of vehicle controls. The present study provides the first evidence suggesting that cyclosporine inhibits GABAergic neural activity and binding properties of the GABAA receptor. These events are closely related to the occurrence of adverse central effects including tremors, convulsions, coma and encephalopathy under cyclosporine therapy.  相似文献   

20.
The mechanism of N-methyl-D-aspartate (NMDA) inhibits oxotremorine-induced acid secretion was examined in rat stomach, in relation to the cyclic GMP system. NMDA (10(-7) M) did not affect the spontaneous acid secretion from the everted preparations of isolated rat stomach, but inhibited the acid secretion stimulated by oxotremorine, and this effect of NMDA was antagonized by 2-amino-5-phosphonovaleric acid (AP-5), (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or N(G)-nitro-L-arginine (L-NNA). NMDA also elevated the cyclic GMP content of mucosal slices from rat stomach, and this effect of NMDA was antagonized by L-NNA. These results indicate that NMDA receptors are present in the rat stomach and regulate the gastric acid secretion. The mechanism underlying the effect of NMDA inhibits oxotremorine-induced acid secretion may be mediated by the NO-dependent cyclic GMP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号