首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
When co‐occurring plant species overlap in flowering phenology they may compete for the service of shared pollinators. Competition for pollination may lower plant reproductive success by reducing the number of pollinator probes or by decreasing the quality of pollen transport to or from a focal species. Pair‐wise interactions between plants sharing pollinators have been well documented. However, relatively few studies have examined interactions for pollination among three or more plant species, and little is known about how the outcomes and mechanisms of competition for pollination may vary with competitor species composition. To better understand how the dynamics of competition for pollination may be influenced by changes in the number of competitors, we manipulated the presence of two competitors, Lythrum salicaria and Lobelia siphilitica, and quantified reproductive success for a third species, Mimulus ringens. Patterns of pollinator preference and interspecific transitions in mixed‐species arrays were significantly influenced by the species composition of competitor plants present. Both pair‐wise and three‐species competition treatments led to a similar ~ 40% reduction in Mimulus ringens seed set. However, the patterns of pollinator foraging we observed suggest that the relative importance of different mechanisms of competition for pollination may vary with the identity and number of competitors present. This variation in mechanisms of competition for pollination may be especially important in diverse plant communities where many species interact through shared pollinators.  相似文献   

2.
Movement of pollinators between coflowering plant species may influence conspecific pollen deposition and seed set. Interspecific pollinator movements between native and showy invasive plants may be particularly detrimental to the pollination and reproductive success of native species. We explored the effects of invasive Lythrum salicaria on the reproductive success of Mimulus ringens, a wetland plant native to eastern North America. Pollinator flights between these species significantly reduced the amount of conspecific pollen deposited on Mimulus stigmas and the number of seeds in Mimulus fruits, suggesting that pollen loss is an important mechanism of competition for pollination. Although pollen loss is often attributed to pollen wastage on heterospecific floral structures, our novel findings suggest that grooming by bees as they forage on a competitor may also significantly reduce outcross pollen export and seed set in Mimulus ringens.  相似文献   

3.
Besides competition for abiotic resources, an increasing number of studies show evidence of the effects of invasive species on the pollination success and reproductive output of indigenous species. We studied the effect of the invasive Impatiens glandulifera Royle on the process of reproduction in the indigenous Lythrum salicaria L. and Alisma plantago-aquatica L. and the naturalized Oenothera biennis L. The latter three species (target species) were transplanted into pots and placed in invaded and non-invaded areas. During flowering season of each of these species, we measured species composition and abundance of pollinators, pollinator behaviour, pollen deposition and female reproductive output of the target species. Competitive effects were found for L. salicaria, in which fewer pollinator species and number of foraging individuals were observed, and also, lower pollen deposition and seed set were measured in these invaded populations. In contrast, the reproductive success of A. plantago-aquatica and O. biennis was not affected by the presence of I. glandulifera. Our data indicate that when invasive and indigenous species show a large overlap in pollinator community, which is the case for I. glandulifera and L. salicaria, competition between these species can occur. When both species have a different pollinator community, pollination success and reproductive output is not affected, even when the indigenous populations are densely and abundantly invaded.  相似文献   

4.
Animal-pollinated invasive species have frequently been demonstrated to outcompete native species for pollinator attention, which can have detrimental effects on the reproductive success and population dynamics of native species. Many animal-pollinated invasive species exhibit showy flowers and provide substantial rewards, allowing them to act as pollinator ‘magnets’, which, at a large scale, can attract more pollinators to an area, but, at a smaller scale, may reduce compatible pollen flow to local native species, possibly explaining why most studies detect competition. By performing pollen limitation experiments of populations in both invaded and uninvaded sites, we demonstrate that the invasive plant Lythrum salicaria appears to facilitate, rather than hinder, the reproductive success of native confamilial Decodon verticillatus, even at a small scale, in a wetland habitat in southeastern Ontario. We found no evidence for a magnet species effect on pollinator attraction to invaded sites. Germination experiments confirmed that seeds from invaded sites had similar germination rates to those from uninvaded sites, making it unlikely that a difference in inbreeding was masking competitive effects. We describe several explanations for our findings. Notably, there were no differences in seed set among populations at invaded and uninvaded sites. Our results underscore the inherent complexity of studying the ecological impacts of invasive species on natives.  相似文献   

5.
The impacts of exotic plants on the pollination and reproductive success of natives have been widely reported; however, in spite of its importance for the invasive process, the role of native plants in the pollination and reproduction of exotic plants has been less explored. To fill this gap, we compared the patterns of pollination and reproductive success in the invasive herb Echium vulgare (Boraginaceae) between monospecific patches (only E. vulgare) and mixed patches (sympatry with native herbs Schizanthus hookeri and Stachys albicaulis) in central Chile. Using sample quadrats of 1 m × 2 m, we quantified the richness, diversity and visitation rate of flower visitors in 15-min observation intervals. We conducted an assay to assess the effect of the patch types (monospecific and mixed) and the isolation of flowers to visitors on both the fruit set and seed/ovule ratio. We showed that native plants favoured the richness of visitors of E. vulgare; however, they did not lead to increases in visitation rate. The reproductive success of E. vulgare did not show differences between contrasted patches; however, the isolation of visitors decreased the fruit set, although seed production was maintained in the absence of pollinators, presumably by an autogamous mechanism. Complementary to our main research focus, we assessed changes in pollination variables and reproductive output in two coflowering native plants that occur with E. vulgare, S. hookeri and S. albicaulis. Despite the fact that our correlational study did not allow us to dissect the effects of mixed patches and relative plant abundances on variables measured for natives, we observed an increase in pollinator richness in mixed patches for the two plants studied. These results suggest a potential facilitation for visitor richness of the exotic plant in coexistence with native plants, although this facilitation does not result in changes in the visit rate or on the reproductive success of any of the studied species. This work underlines the need for additional research on community levels that assess reciprocal effects on pollination between coflowering natives and exotics.  相似文献   

6.
Alien plants may be reproductively limited in exotic habitats because of a lack of mutualistic pollinators. However, if plants are adequately served by generalist pollinators, successful reproduction, naturalisation and expansion into exotic habitats may occur. Rhododendron ponticum is very successful, ecologically damaging invasive plant in Britain and Ireland, but is in decline in its native Iberian habitat. It spreads locally by sending out lateral branches, but for longer distance dispersal it relies on sexually produced seeds. Little is known about R. ponticum's pollination ecology and breeding biology in invaded habitats. We examined the flower-visiting communities and maternal reproductive success of R. ponticum in native populations in southern Spain and in exotic ones in Ireland. R. ponticum in flowers are visited by various generalist (polylectic) pollinator species in both native and exotic habitats. Although different species visited flowers in Ireland and Spain, the flower visitation rate was not significantly different. Insects foraging on R. ponticum in Spain carried less R. ponticum pollen than their Irish counterparts, and carried fewer pollen types. Fruit production per inflorescence varied greatly within all populations but was significantly correlated with visitation at the population level. Nectar was significantly depleted by insects in some exotic populations, suggesting that this invasive species is providing a floral resource for native insects in some parts of Ireland. The generality of the pollination system may be factor contributing to R.ponticum's success in exotic habitats.  相似文献   

7.
The success of exotic plants may be due to lower herbivore loads than those on native plants (Enemies Release Hypothesis). Predictions of this hypothesis include lower herbivore abundances, diversity, and damage on introduced plant species compared to native ones. Greater density or diversity of predators and parasitoids on exotic versus native plants may also reduce regulation of exotic plants by herbivores. To test these predictions, we measured arthropod abundance, arthropod diversity, and foliar damage on invasive Chinese tallow tree (Triadica sebifera) and three native tree species: silver maple (Acer saccharinum), sycamore (Platanus occidentalis), and sweetgum (Liquidambar styraciflua). Arthropod samples were collected with canopy sweep nets from six 20 year old monoculture plots of each species at a southeast Texas site. A total of 2,700 individuals and 285 species of arthropods were caught. Overall, the species richness and abundance of arthropods on tallow tree were similar to the natives. But, ordination (NMS) showed community composition differed on tallow tree compared to all three native trees. It supported an arthropod community that had relatively lower herbivore abundance but relatively more predator species compared to the native species examined. Leaves were collected to determine damage. Tallow tree experienced less mining damage than native trees. The results of this study supported the Enemies Release Hypothesis predictions that tallow tree would have low herbivore loads which may contribute to its invasive success. Moreover, a shift in the arthropod community to fewer herbivores without a reduction in predators may further limit regulation of this exotic species by herbivores in its introduced range.  相似文献   

8.
Invasive plants may compete with native species for abiotic factors as light, space and nutrients, and have also been shown to affect native pollination interactions. Studies have mainly focused on how invasive plants affect pollinator behaviour, i.e. attraction of pollinators to or away from native flowers. However, when an invasive plant provides resources utilized by native pollinators this could increase pollinator population sizes and thereby pollination success in natives. Effects mediated through changes in pollinator population sizes have been largely ignored in previous studies, and the dominance of negative interactions suggested by meta-analyses may therefore be biased. We investigated the impact of the invasive Lupinus polyphyllus on pollination in the native Lotus corniculatus using a study design comparing invaded and uninvaded sites before and after the flowering period of the invasive. We monitored wild bee abundance in transects, and visit rate and seed production of potted Lotus plants. Bumblebee abundance increased 3.9 times in invaded sites during the study period, whereas it was unaltered in uninvaded sites. Total visit rate per Lotus plant increased 2.1 times in invaded sites and decreased 4.4 times in uninvaded sites. No corresponding change in seed production of Lotus was found. The increase in visit rate to Lotus was driven by an increase in solitary bee visitation, whereas mainly bumblebees were observed to visit the invasive Lupinus. The mechanism by which the invasive increases pollinator visit rates to Lotus could be increased availability of other flower resources for solitary bees when bumblebees forage on Lupinus.  相似文献   

9.
Removal of invasive species often benefits biological diversity allowing ecosystems’ recovery. However, it is important to assess the functional roles that invaders may have established in their new areas to avoid unexpected results from species elimination. Invasive animal-pollinated plants may affect the plant–pollination interactions by changing pollinator availability and/or behaviour in the community. Thus, removal of an invasive plant may have important effects on pollinator community that may then be reflected positive or negatively on the reproductive success of native plants. The objective of this study was to assess the effect of removing Oxalis pes-caprae, an invasive weed widely spread in the Mediterranean basin, on plant–pollinator interactions and on the reproductive success of co-flowering native plants. For this, a disturbed area in central Portugal, where this species is highly abundant, was selected. Visitation rates, natural pollen loads, pollen tube growth and natural fruit set of native plants were compared in the presence of O. pes-caprae and after manual removal of their flowers. Our results showed a highly resilient pollination network but also revealed some facilitative effects of O. pes-caprae on the reproductive success of co-flowering native plants. Reproductive success of the native plants seems to depend not only on the number and diversity of floral visitors, but also on their efficiency as pollinators. The information provided on the effects of invasive species on the sexual reproductive success of natives is essential for adequate management of invaded areas.  相似文献   

10.
The purpose of this study was to assess variation in male and female reproductive success among the three morphs of the tristylous plant, Lythrum salicaria. Fluorescent dyes were used as pollen analogs to determine whether morphs differ in their abilities to donate and receive pollen, and actual and potential seed set was measured with a hand pollination experiment. Dye transfer among morphs was highly asymmetric, with more frequent transfer from the short-styled morph to the long- and mid-styled morphs. This suggests that shorts are performing better at pollen donation and longs and mids are performing better at pollen receipt. All flowers on 95 plants were hand pollinated to test whether female reproductive success is more pollen-limited in the short-styled morph than in other morphs. Hand-pollinated short-styled plants had significantly higher total seed mass and more seeds per capsule than short controls, whereas hand pollination failed to increase seed set in long and mid morphs. As predicted, short-styled morphs showed significant pollen limitation, whereas seed set in long- and midstyled morphs was not pollen-limited. Thus, in Lythrum salicaria asymmetrical pollen flow generates morph-specific differences in male and female fitness.  相似文献   

11.
Previous studies have examined an association between reproductive success and pollination biology of rare versus widespread species through pair-wise comparisons of native and invasive congeners or rare and common congeners. To determine the importance of reproductive success and pollination biology for an invasive thistle, Cirsium vulgare, we compared it in its invaded range to five, co-occurring native Cirsium species that range from rare to common. Native study species include C. fontinale var. fontinale, C. andrewsii, C. brevistylum, C. occidentale, and C. quercetorum. We compared all species’ reproductive success, insect visitation rate and composition, autonomous self-pollination, and level of pollen limitation in multiple populations. Species differed in their reproductive success; the invasive C. vulgare produced more flower heads per plant than most native species. C. vulgare attracted more visitors than its congeners. In addition, reproductive success and insect visitation significantly varied between populations within species, mainly due to aphid infestation in one population of C. occidentale. Unlike the rare species (C. fontinale and andrewsii), C. vulgare did not require a pollinator for high-levels of seed production. The remaining native species set fewer seeds than C. vulgare without a pollinator. However, differences in insect visitation and autonomous self-pollination did not lead to differences in pollen limitation across species or between populations. This result suggests that factors other than pollination biology determine the difference in reproductive success of these species. However, high levels of autonomous self-pollination and generalist insect visitation may allow the invasive C. vulgare to easily establish new populations from low numbers of propagules. Our study provides one contrast that should build towards a larger comparative analysis to examine general patterns in the relationship between reproductive success, pollination biology, rare and invasive species, and our ability to predict biological invasions in introduced species.  相似文献   

12.
Biological invasions can strongly influence species interactions such as pollination. Most of the documented effects of exotic plant species on plant-pollinator interactions have been observational studies using single pairs of native and exotic plants, and have focused on dominant exotic plant species. We know little about how exotic plants alter interactions in entire communities of plants and pollinators, especially at low to medium invader densities. In this study, we began to address these gaps by experimentally removing the flowers of a showy invasive shrub, Rosa multiflora, and evaluating its effects on the frequency, richness, and composition of bee visitors to co-flowering native plants. We found that while R. multiflora increased plot-level richness of bee visitors to co-flowering native plant species at some sites, its presence had no significant effects on bee visitation rate, visitor richness, bee community composition, or abundance overall. In addition, we found that compared to co-flowering natives, R. multiflora was a generalist plant that primarily received visits from generalist bee species shared with native plant species. Our results suggest that exotic plants such as R. multiflora may facilitate native plant pollination in a community context by attracting a more diverse assemblage of pollinators, but have limited and idiosyncratic effects on the resident plant-pollinator network in general.  相似文献   

13.
Aim Propagule size and output are critical for the ability of a plant species to colonize new environments. If invasive species have a greater reproductive output than native species (via more and/or larger seeds), then they will have a greater dispersal and establishment ability. Previous comparisons within plant genera, families or environments have conflicted over the differences in reproductive traits between native and invasive species. We went beyond a genus‐, family‐ or habitat‐specific approach and analysed data for plant reproductive traits from the global literature, to investigate whether: (1) seed mass and production differ between the original and introduced ranges of invasive species; (2) seed mass and production differ between invasives and natives; and (3) invasives produce more seeds per unit seed mass than natives. Location Global. Methods We combined an existing data set of native plant reproductive data with a new data compilation for invasive species. We used t‐tests to compare original and introduced range populations, two‐way ANOVAs to compare natives and invasives, and an ANCOVA to examine the relationship between seed mass and production for natives and invasives. The ANCOVA was performed again incorporating phylogenetically independent contrasts to overcome any phylogenetic bias in the data sets. Results Neither seed mass nor seed production of invasive species differed between their introduced and original ranges. We found no significant difference in seed mass between invasives and natives after growth form had been accounted for. Seed production was greater for invasive species overall and within herb and woody growth forms. For a given seed mass, invasive species produced 6.7‐fold (all species), 6.9‐fold (herbs only) and 26.1‐fold (woody species only) more seeds per individual per year than native species. The phylogenetic ANCOVA verified that this trend did not appear to be influenced by phylogenetic bias within either data set. Main conclusions This study provides the first global examination of both seed mass and production traits in native and invasive species. Invasive species express a strategy of greater seed production both overall and per unit seed mass compared with natives. The consequent increased likelihood of establishment from long‐distance seed dispersal may significantly contribute to the invasiveness of many exotic species.  相似文献   

14.
Since its introduction to North America, Lythrum salicaria (L.) (purple loosestrife) has become invasive in marshy and riparian habitats. We compared gas-exchange responses to external CO2 partial pressure and light, as well as related leaf structural and biochemical characteristics, of L. salicaria with those of co-occurring native Asclepias syriaca (common milkweed) and Solidago graminifolia (lance-leaved goldenrod) along a pond bank in the Black Rock Forest, Cornwall, New York, USA to examine if the invasive success of L. salicaria may be influenced by robust leaf gas-exchange characteristics, including relatively high rates of photosynthesis and low rates of respiration, compared with those of less successful co-occurring native plant species. Neither the mean rate of net photosynthesis measured at ambient CO2 and saturating photon flux density (A) nor the mean dark respiration rate (RD) differed significantly between L. salicaria and either of the native species, while both the mean maximum rate of photosynthesis at saturating CO2 concentration and photon flux density (A max) and the mean rate of respiration measured in light (RL) were significantly higher in L. salicaria than A. syriaca, but no different between L. salicaria and S. graminifolia. Likewise, photosynthetic nitrogen-use efficiency was greater in L. salicaria than A. syriaca only, while photosynthetic water-use efficiency was significantly less in both L. salicaria and S. graminifolia than in A. syriaca. Despite limited interspecific differences in leaf photosynthesis, respiration, and resource-use efficiency, particularly between L. salicaria and S. graminifolia, we found that L. salicaria assimilated 208% more carbon per unit of energy invested in leaf biomass than either of the co-occurring native species, suggesting that increased photosynthetic energy-use efficiency may influence its observed invasive success. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Geerts  Sjirk  Adedoja  Opeyemi 《Biological invasions》2021,23(9):2961-2971

The potential of an alien plant to spread rapidly and colonize new habitat may be related to the mode of reproduction and the ability to attract pollinators. Most studies focus on widespread invasive plants, in which pollinators are rarely limiting. Here, we assess the ability of a recent invader in South Africa, the tristylous Lythrum salicaria to self-reproduce and whether this can explain the delay between introduction and spread. This study was conducted in one of the largest known populations (a total of 7 populations in South Africa) of L. salicaria in the Liesbeek river in the fynbos biome. We assessed the importance of pollinators and autonomous selfing in L. salicaria by comparing seed set between pollinator excluded and naturally pollinated flowers. Overall, 5 pollinators (4 native and 1 alien) were recorded with Cape honeybees and Africa Monarch butterflies the most prominent. Seed and fruit set were significantly higher in open pollinated flowers compared to pollinator excluded flowers. Also, seed and fruit set in pollinator excluded flowers were higher in long and medium morphs compared to short morphs. Germination was high for seeds from pollinator, but also from pollinator excluded treatments. This shows that L. salicaria in South Africa is self-compatible to some extent, but it is frequented by pollinators, significantly increasing seed production. Despite L. salicaria being tristylous, all 3 morphs are present in South Africa and with a huge seed production, this species has the potential to become a major invader of rivers and wetlands in South Africa.

  相似文献   

16.
Abstract. We compared the demographic characteristics of native central-European and invasive USA-populations of Lythrum salicaria growing in similar habitats. Based on the ‘Evolution of increased competitive ability’ (EICA) hypothesis, we predicted that shoot density, height, and biomass, fertility, and fecundity would be less in the European populations due to greater loss of plant material caused by exposure to control agents. Shoot density was significantly greater in most USA-populations, but shoot height and biomass were similar in invasive and native populations growing in similar habitats, especially in growing seasons with greater water availability. The number of fertile shoots was greater for invasive populations, except for those growing in sandy, nutrient-poor substrates, while percent fertility did not differ between populations growing under similar field conditions. Fecundity was also similar for populations growing in nutrient-poor and intermediate habitats, but was significantly greater in USA-populations (89–103 seeds per fruit), compared to European populations (58–64 seeds per fruit), growing in nutrient-rich habitats; seed predators were found in these European populations only. Log-linear analysis of transition frequency matrices showed that the growth of USA-populations is different from European populations, but that habitat effect was strong. Population dynamics were similar for populations growing in nutrient-poor habitats; location was of marginal importance only. USA-populations responded differently from European populations growing in intermediate and nutrient-rich habitats; differences were most pronounced between invasive (center of its North American distribution) and native populations growing in nutrient-rich habitats. The use of insect herbivores as biological control agents in North America will work best against L. salicaria populations growing in nutrient-rich habitats in the center of its invasive distribution, but will be less effective against populations growing in other habitats or portions of its range. Other factors, including nutrient- or water availability, and climate, may be as important as herbivory in affecting invasive populations; these factors interact to control L. salicaria in a more complex manner than thought previously.  相似文献   

17.
Hager HA 《Oecologia》2004,140(1):140-149
Non-native plants can have adverse effects on ecosystem structure and processes by invading and out-competing native plants. I examined the hypothesis that mature plants of non-native and native species exert differential effects on the growth of conspecific and heterospecific seedlings by testing predictions that (1) invasive vegetation has a stronger suppressive effect on seedlings than does native vegetation, (2) seedlings of invasive species are better able to grow in established vegetation than are native seedlings, and (3) invasive species facilitate conspecific and inhibit heterospecific seedling growth. I measured growth rates and interaction intensities for seedlings of four species that were transplanted into five wetland monoculture types: invasive Lythrum salicaria; native L. alatum, Typha angustifolia, T. latifolia; unvegetated control. Invasive L. salicaria had the strongest suppressive effect on actual and per-individual bases, but not on a per-gram basis. Seedlings of T. latifolia were better able to grow in established vegetation than were those of L. salicaria and T. angustifolia. These results suggest that L. salicaria is not a good invader of established vegetation, but once established, it is fairly resistant to invasion. Thus, it is likely that disturbance of established vegetation facilitates invasion by L. salicaria, allowing it to compete with other species in even-aged stands where its high growth rate and consequent production of aboveground biomass confer a competitive advantage.  相似文献   

18.
The effects of invasive plants on plants native to areas that are being invaded can be quite variable, depending on the species of the invasive plant involved as well as the physical characteristics of the location being invaded. My study focuses on the effects of Phragmites australis Linnaeus (common reed) and Lythrum salicaria L. (purple loosestrife) on the same native plant community. Uninvaded plots dominated by native plants Typha angustifolia L. (narrowleaf cattail) and Typha latifolia L. (broadleaf cattail) served as the control. I surveyed percent cover of species during early summer and midsummer for 3 years in six Hudson River freshwater tidal wetlands (sites). Differences in species richness, composition and abundance were small, but significant among invaded and uninvaded plots and among sites. However, these differences remained significant when data for dominant species (invasive and native) were removed. Differences in native plant species abundance were attributed to invasive plant species-specific characteristics and differences in species richness and composition were attributed to physical location (zonation) in these freshwater tidal marshes. “Invasive” status of a dominant plant species was less important in invasive plant–native plant interactions than species-specific characteristics and zonation. Further research into the effects of site and land-use on invasive plant impacts is recommended.  相似文献   

19.
Native and exotic plants can influence one another's fecundity through their influence on shared pollinators. Specifically, invasion may alter abundance and composition of local floral resources, affecting pollinator visitation and ultimately causing seedset of natives in more‐invaded and less‐invaded floral neighborhoods to differ. Such pollinator‐mediated effects of exotic plants on natives are common, but native and exotic plants often share multiple pollinators, which may differ in their responses to altered floral neighborhoods. We quantified pollinator‐mediated interactions between three common forbs of western Washington prairies (native Microseris laciniata and Eriophyllum lanatum and European Hypochaeris radicata) in three floral neighborhoods: 1) high native and low exotic floral density, 2) high exotic floral density and low native density, and 3) experimentally manipulated low exotic floral density. Pollinator visitation rates varied by floral neighborhood, plant species identity, and their interaction for all three plant species. Similarly, pollinator functional groups (eusocial bees, solitary bees, and syrphid flies) contributed differing proportions of total visitation to each species depending upon neighborhood context. Consequently, in exotic neighborhoods H. radicata competed with native M. laciniata, reducing seed set, while simultaneously facilitating visitation and seed set for native E. lanatum. Seed set of H. radicata was also highest in exotic neighborhoods (with high densities of conspecifics), raising the possibility of a positive feedback between exotic abundance and success. Our results suggest that the outcome of indirect interactions between native and exotic plants depends on the density and the composition of the floral neighborhood and of the pollinator fauna, and on context‐dependent pollinator foraging.  相似文献   

20.
The pollination patterns of bees and butterflies were observed in an assemblage composed of 57 plants of Lythrum alatum and 30 plants of L. salicaria. Lythrum salicaria was preferred by both groups of pollinators as indicated by the greater number of flights from this species as compared to flights from L. alatum. The degree of assortative pollination was measured in both groups of pollinators and was greater in bees. Fidelity in bees appeared to be in response to species attractiveness, whereas in butterflies it appeared to be in response to species balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号