首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adeno-associated virus type 2 (AAV2) preferentially integrates its genome into the AAVS1 locus on human chromosome 19. Preferential integration requires the AAV2 Rep68 or Rep78 protein (Rep68/78), a Rep68/78 binding site (RBS), and a nicking site within AAVS1 and may also require an RBS within the virus genome. To obtain further information that might help to elucidate the mechanism and preferred substrate configurations of preferential integration, we amplified junctions between AAV2 DNA and AAVS1 from AAV2-infected HeLaJW cells and cells with defective Artemis or xeroderma pigmentosum group A genes. We sequenced 61 distinct junctions. The integration junction sequences show the three classical types of nonhomologous-end-joining joints: microhomology at junctions (57%), insertion of sequences that are not normally contiguous with either the AAV2 or the AAVS1 sequences at the junction (31%), and direct joining (11%). These junctions were spread over 750 bases and were all downstream of the Rep68/78 nicking site within AAVS1. Two-thirds of the junctions map to 350 bases of AAVS1 that are rich in polypyrimidine tracts on the nicked strand. The majority of AAV2 breakpoints were within the inverted terminal repeat (ITR) sequences, which contain RBSs. We never detected a complete ITR at a junction. Residual ITRs at junctions never contained more than one RBS, suggesting that the hairpin form, rather than the linear ITR, is the more frequent integration substrate. Our data are consistent with a model in which a cellular protein other than Artemis cleaves AAV2 hairpins to produce free ends for integration.  相似文献   

2.
The pSub201-pAAV/Ad plasmid cotransfection system was developed to eliminate homologous recombination which leads to generation of the wild-type (wt) adeno-associated virus type 2 (AAV) during recombinant vector production. The extent of contamination with wt AAV has been documented to range between 0.01 and 10%. However, the precise mechanism of generation of the contaminating wt AAV remains unclear. To characterize the wt AAV genomes, recombinant viral stocks were used to infect human 293 cells in the presence of adenovirus. Southern blot analyses of viral replicative DNA intermediates revealed that the contaminating AAV genomes were not authentic wt but rather wt AAV-like sequences derived from recombination between (i) AAV inverted terminal repeats (ITRs) in the recombinant plasmid and (ii) AAV sequences in the helper plasmid. Replicative AAV DNA fragments, isolated following amplification through four successive rounds of amplification in adenovirus-infected 293 cells, were molecularly cloned and subjected to nucleotide sequencing to identify the recombinant junctions. Following sequence analyses of 31 different ends of AAV-like genomes derived from two different recombinant vector stocks, we observed that all recombination events involved 10 nucleotides in the AAV D sequence distal to viral hairpin structures. We have recently documented that the first 10 nucleotides in the D sequence proximal to the AAV hairpin structures are essential for successful replication and encapsidation of the viral genome (X.-S. Wang et al., J. Virol. 71:3077–3082, 1997), and it was noteworthy that in each recombinant junction sequenced, the same 10 nucleotides were retained. We also observed that adenovirus ITRs in the helper plasmid were involved in illegitimate recombination with AAV ITRs, deletions of which significantly reduced the extent of wt AAV-like particles. Furthermore, the combined use of recombinant AAV plasmids lacking the distal 10 nucleotides in the D sequence and helper plasmids lacking the adenovirus ITRs led to complete elimination of replication-competent wt AAV-like particles in recombinant vector stocks. These strategies should be useful in producing clinical-grade AAV vectors suitable for human gene therapy.  相似文献   

3.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

4.
Adeno-associated virus (AAV) replication depends on two viral components for replication: the AAV nonstructural proteins (Rep) in trans, and inverted terminal repeat (ITR) sequences in cis. AAV type 5 (AAV5) is a distinct virus compared to the other cloned AAV serotypes. Whereas the Rep proteins and ITRs of other serotypes are interchangeable and can be used to produce recombinant viral particles of a different serotype, AAV5 Rep proteins cannot cross-complement in the packaging of a genome with an AAV2 ITR. In vitro replication assays indicated that the block occurs at the level of replication instead of at viral assembly. AAV2 and AAV5 Rep binding activities demonstrate similar affinities for either an AAV2 or AAV5 ITR; however, comparison of terminal resolution site (TRS) endonuclease activities showed a difference in specificity for the two DNA sequences. AAV2 Rep78 cleaved only a type 2 ITR DNA sequence, and AAV5 Rep78 cleaved only a type 5 probe efficiently. Mapping of the AAV5 ITR TRS identified a distinct cleavage site (AGTG TGGC) which is absent from the ITRs of other AAV serotypes. Comparison of the TRSs in the AAV2 ITR, the AAV5 ITR, and the AAV chromosome 19 integration locus identified some conserved nucleotides downstream of the cleavage site but little homology upstream.  相似文献   

5.
The adeno-associated virus (AAV) is unique in its ability to target viral DNA integration to a defined region of human chromosome 19 (AAVS1). Since AAVS1 sequences are not conserved in a rodent’s genome, no animal model is currently available to study AAV-mediated site-specific integration. We describe here the generation of transgenic rats and mice that carry the AAVS1 3.5-kb DNA fragment. To test the response of the transgenic animals to Rep-mediated targeting, primary cultures of mouse fibroblasts, rat hepatocytes, and fibroblasts were infected with wild-type wt AAV. PCR amplification of the inverted terminal repeat (ITR)-AAVS1 junction revealed that the AAV genome integrated into the AAVS1 site in fibroblasts and hepatocytes. Integration in rat fibroblasts was also observed upon transfection of a plasmid containing the rep gene under the control of the p5 and p19 promoters and a dicistronic cassette carrying the green fluorescent protein (GFP) and neomycin (neo) resistance gene between the ITRs of AAV. The localization of the GFP-Neo sequence in the AAVS1 region was determined by Southern blot and FISH analysis. Lastly, AAV genomic DNA integration into the AAVS1 site in vivo was assessed by virus injection into the quadriceps muscle of transgenic rats and mice. Rep-mediated targeting to the AAVS1 site was detected in several injected animals. These results indicate that the transgenic lines are proficient for Rep-mediated targeting. These animals should allow further characterization of the molecular aspects of site-specific integration and testing of the efficacy of targeted integration of AAV recombinant vectors designed for human gene therapy.  相似文献   

6.
The adeno-associated virus 2 (AAV) contains a single-stranded DNA genome of which the terminal 145 nucleotides are palindromic and form T-shaped hairpin structures. These inverted terminal repeats (ITRs) play an important role in AAV DNA replication and resolution, since each of the ITRs contains a terminal resolution site (trs) that is the target site for the AAV rep gene products (Rep). However, the Rep proteins also interact with the AAV DNA sequences that lie outside the ITRs, and the ITRs also play a crucial role in excision of the proviral genome from latently infected cells or from recombinant AAV plasmids. To distinguish between Rep-mediated excision of the viral genome during rescue from recombinant AAV plasmids and the Rep-mediated resolution of the ITRs during AAV DNA replication, we constructed recombinant AAV genomes that lacked either the left or the right ITR sequence and one of the Rep-binding sites (RBSs). No rescue and replication of the AAV genome occurred from these plasmids following transfection into adenovirus type 2-infected human KB cells, as expected. However, excision and abundant replication of the vector sequences was clearly detected from the plasmid that lacked the AAV left ITR, suggesting the existence of an additional putative excision site in the left end of the AAV genome. This site was precisely mapped to one of the AAV promoters at map unit 5 (AAV p5) that also contains an RBS. Furthermore, deletion of this RBS abolished the rescue and replication of the vector sequences. These studies suggest that the Rep-mediated cleavage at the RBS during viral DNA replication may, in part, account for the generation of the AAV defective interfering particles.  相似文献   

7.
The adeno-associated virus type 2 (AAV) genome contains inverted terminal repeats (ITRs) of 145 nucleotides. The terminal 125 nucleotides of each ITR form palindromic hairpin (HP) structures that serve as primers for AAV DNA replication. These HP structures also play an important role in integration as well as rescue of the proviral genome from latently infected cells or from recombinant AAV plasmids. Each ITR also contains a stretch of 20 nucleotides, designated the D sequence, that is not involved in HP structure formation. We have recently shown that the D sequence plays a crucial role in high-efficiency rescue, selective replication, and encapsidation of the AAV genome and that a host cell protein, designated the D sequence-binding protein (D-BP), specifically interacts with this sequence (X.-S. Wang, S. Ponnazhagan, and A. Srivastava, J. Virol. 70:1668-1677, 1996). We have now performed mutational analyses of the D sequences to evaluate their precise role in viral DNA rescue, replication, and packaging. We report here that 10 nucleotides proximal to the HP structure in each of the D sequences are necessary and sufficient to mediate high-efficiency rescue, replication, and encapsidation of the viral genome in vivo. In in vitro studies, the same 10 nucleotides were found to be required for specific interaction with D-BP, but viral Rep protein-mediated cleavage at the functional terminal resolution site is independent of these sequences. These data suggest that AAV replication and terminal resolution functions can be uncoupled and that the lack of efficient replication of AAV DNA may not be a consequence of impaired resolution of the viral ITRs. These studies further illustrate that the D sequence-D-BP interaction plays an important role in the AAV life cycle and indicate that it may be possible to develop the next generation of AAV vectors capable of encapsidating larger pieces of DNA.  相似文献   

8.
Adeno-associated virus type 2 (AAV) is the only known eucaryotic virus capable of targeted integration in human cells. AAV integrates preferentially into human chromosome (ch) 19q13.3qter. The nonstructural proteins of AAV-2, Rep78 and Rep68, are essential for targeted integration. Rep78 and Rep68 are multifunctional proteins with diverse biochemical activities, including site-specific binding to AAV and ch-19 target sequences, helicase activity, and strand-specific, site-specific endonuclease activities. Both a Rep DNA binding element (RBE) and a nicking site essential for AAV replication present within the viral terminal repeats are also located on ch-19. Recently, identical RBE sequences have been identified at other locations in the human genome. This fact raises numerous questions concerning AAV targeted integration; specifically, how many RBE sequences are in the human genome? How does Rep discriminate between these and the ch-19 RBE sequence? Does Rep interact with all sites and, if so, how is targeted integration within a fixed time frame facilitated? To better characterize the role of Rep in targeted integration, we established a Rep-dependent filter DNA binding assay using a highly purified Rep-68 fusion protein. Electron microscopy (EM) analysis was also performed to determine the characteristics of the Rep-RBE interaction. Our results determined that the Rep affinity for ch-19 is not distinct compared to other RBEs in the human genome when utilizing naked DNA. In fact, a minimum-binding site (GAGYGAGC) efficiently associated with Rep, suggesting that as many as 2 × 105 sites may exist. In addition, such sites also exist frequently in nonprimate mammalian genomes, although AAV integrates site specifically into primate genomes. EM analysis demonstrated that only one Rep-DNA complex was formed on ch-19 target DNA. Surprisingly, identically sized complexes were observed on all substrates containing a RBE sequence, but never on DNA lacking an RBE. Rep-DNA complexes involved a multimeric protein structure that spanned ca. 60 bp. Immunoprecipitation of AAV latently infected cells determined that 1,000 to 4,000 copies of Rep78 and Rep68 protein are expressed per cell. Comparison of the Rep association constant with those of established DNA binding proteins indicates that sufficient molecules of Rep are present to interact with all potential RBE sites. Moreover, Rep expression in the absence of AAV cis-acting substrate resulted in Rep-dependent amplification and rearrangement of the target sequence in ch-19. This result suggests that this locus is a hot spot for Rep-dependent recombination. Finally, we engineered mice to carry a single 2.7-kb human ch-19 insertion containing the AAV ch-19 target locus. Using cells derived from these mice, we demonstrated that this sequence was sufficient for site-specific recombination after infection with transducing vectors expressing Rep. This result indicates that any host factors required for targeting are conserved between human and mouse. Furthermore, the human ch-19 cis sequences and chromatin structure required for site-specific recombination are contained within this fragment. Overall, these results indicate that the specificity of targeted recombination to human ch-19 is not dictated by differential Rep affinities for RBE sites. Instead, specificity is likely dictated by human ch-19 sequences that serve as a Rep protein-mediated origin of replication, thus facilitating viral targeting through Rep-Rep interactions and host enzymes, resulting in site-specific recombination. Control of specificity is clearly dictated by the ch-19 sequences, since transfer of these sequences into the mouse genome are sufficient to achieve Rep-dependent site-specific integration.Adeno-associated virus type 2 (AAV) contains a single-stranded DNA genome of approximately 4.7 kb (50) and is a member of the Parvoviridae family (3). AAV is unique among other eucaryotic DNA viruses in that it utilizes a biphasic lifecycle to persist in nature. In the presence of a helper virus, adenovirus (Ad) or herpesvirus, AAV will undergo a productive infection. In the absence of a helper virus, AAV will integrate preferentially (>70%) into chromosome (ch) 19q13.3qter (3, 35). The ability of this nonpathogenic DNA virus, or virus-derived vector systems, to integrate site specifically have made it an attractive candidate vector for human gene therapy (45).The AAV genome consists of two open reading frames (ORFs), which comprise the rep and cap genes, and 145-bp inverted terminal repeats (ITRs), which serve as the origins of replication (3, 35). The left ORF of AAV encodes four nonstructural proteins, Rep78, Rep68, Rep52, and Rep40. Extensive characterization of Rep78 and Rep68 in vitro has identified the following biochemical activities, DNA binding (18, 19), site-specific and strand-specific endonuclease activities (17, 19), and DNA-RNA and DNA-DNA helicase activities (17, 19, 59), all of which appear to be necessary for viral replication (15, 53). More importantly, Rep78 and Rep68 are required for mediating targeted integration (2, 43, 47, 51, 60).Though site-specific integration is dependent upon either of the two large Rep proteins, the AAV ITRs are the only cis elements required for integration (34, 44, 61). In the absence of Rep proteins, the virus will still integrate through the ITR sequence but randomly into the host genome (21, 56, 61). Although integration in the absence of the Rep proteins is random, virus-cell junctions are nearly identical to junctions formed during targeted integration (DNA microhomology at junctions, specific deletions of the ITR sequences, rearrangement of the chromosome locus, and head-to-tail virus concatemers) (41, 62). In fact, in vitro integration products generated using cellular extracts produced identical type junctions, demonstrating the essential role the ITRs play in viral integration (62). From this analysis, Yang et al. (62) concluded that both random and targeted integration are dependent upon a cellular recombination pathway, with the role of Rep facilitating integration at ch-19. To help account for AAV targeting, a nearly identical Rep binding element (RBE) and a nicking site (trs) to that present on the AAV ITR was identified on the ch19.13.3qter AAV integration sequence (2325, 43, 46, 54, 57). It was also demonstrated that Rep68 could mediate complex formation between the AAV ITR and the ch-19 integration site in vitro (57). This led to a hypothesis that AAV may target integration by Rep-mediated complex formation between the AAV ITR and the ch19 integration site. However, since this observation subsequent data has demonstrated that Rep can bind to degenerate RBE sequences, (5, 32). In fact, computer analysis identified at least 15 genomic genes which contained RBE sites that bound to AAV Rep protein in vitro, all more efficient than the ch-19 sequence (58). These data raise the question as to how Rep can target ch-19 among other RBE sequences. Using an Epstein-Barr virus (EBV)-based shuttle vector system carrying sequences from ch-19, Linden et al. demonstrated that the trs site was also critical for AAV site-specific integration (29, 30). When the trs site was not present, targeting was lost, even though the RBE was present. The present study suggested that both sequences were essential for site-specific integration (the RBE and the trs sequences). The probability of identifying a RBE with the correct proximity of a trs site would suggest a frequency of <6 × 10−11/genome, thereby defining a unique sequence in the human genome (54). While these studies identify ch-19 cis elements required for AAV targeted integration and suggest why this reaction is specific, how Rep carries out this reaction remains unclear.Critical to any model of AAV Rep-mediated targeted integration is the ability to recognize the ch-19 target sequence among other potential RBE sequences. Though Rep can bind many degenerate sequences, the actual definition of what constitutes an RBE is somewhat unclear. Random oligonucleotide selection demonstrated that the RBE could be defined as an 8-bp sequence: 5′-GAGYGAGC-3′ (5). However, it was shown by methylation interference assays that the RBE was an 18-bp core sequence and that any mutation within this sequence would significantly affect Rep binding (42). Also, the report by Wonderling and Owens (58) demonstrated that the RBE oligonucleotides derived from the BLAST search contained mutations in this 18-bp core sequence but still bound better to the MBP-Rep68 than to the ch-19 RBE. Depending on the definition of an AAV RBE, the copy number present in the human genome (GAGYGAGC = 200,000 copies/genome, whereas 18-bp core = 1 copy/genome) could significantly impact the ability of Rep to identify its target locus.Based on the above information, the number of RBE sequences in the human genome, how Rep discriminates between these and the ch-19 target locus RBE sequence, and how Rep interacts with all sites and still facilitates targeted integration within a fixed time frame become of significant importance. In this study, we evaluated the role of alternative RBEs in the human genome and how these sequences might impact the ability of Rep to target the locus on ch-19. Using a filter-binding assay and a highly purified source of Rep68 protein, we established that genomic DNA will compete efficiently against a ch-19 target sequences. In this assay, a minimum Rep binding site of 8-bp in the context of large DNA fragments demonstrated competition, suggesting that as many as 200,000 potential binding sites may exist in the human genome. Filter-binding analysis of genomic DNA successfully retained ch-19 target sequences, as well as a cellular RBE identified by BLAST analysis, corroborating the competition results. Electron microscopy (EM) analysis was utilized to distinguish possible differences between Rep protein DNA interaction with ch-19 RBE compared to a minimum 8-bp RBE sequence. Identical multimeric Rep protein DNA complexes, which spanned about 60 bp, assembled on ch-19 target DNA, as well as a minimum RBE site, but never on heterologous DNA lacking these sequences. At a high Rep concentration, protein DNA looping structures were detected, but no evidence for paranemic structures were observed. In vivo analysis of Rep protein levels in a latent infection demonstrated approximately 1 to 4,000 copies/cell. Analysis of Rep expression in non-virus-infected cells demonstrated DNA rearrangement of the ch-19 target sequence, suggesting that this locus is a hot spot for Rep-induced DNA amplification and rearrangement that most likely influences AAV targeted integration. Finally, generation of an animal model carrying the human ch-19 sequence at the mouse hypoxanthine phosphoribosyltransferase (HPRT) locus facilitated AAV Rep-mediated targeted integration and corroborates the importance of the ch-19 RBE-trs sequence.  相似文献   

9.
C Balagúe  M Kalla    W W Zhang 《Journal of virology》1997,71(4):3299-3306
Two adeno-associated virus (AAV) elements are necessary for the integration of the AAV genome: Rep78/68 proteins and inverted terminal repeats (ITRs). To study the contribution of the Rep proteins and the ITRs in the process of integration, we have compared the integration efficiencies of three different plasmids containing a green fluorescent protein (GFP) expression cassette. In one plasmid, no viral sequences were present; a second plasmid contained AAV ITRs flanking the reporter gene (integration cassette), and a third plasmid consisted of an integration cassette plus a Rep78 expression cassette. One day after transfection of 293 cells, fluorescent cells were sorted by flow cytometry and plated at 1 cell per well. Two weeks after sorting, colonies were monitored for stable expression of GFP. Transfection with the GFP plasmid containing no viral sequences resulted in no stable fluorescent colonies. Transfection with the plasmid containing the integration cassette alone (GFP flanked by ITRs) produced stable fluorescent colonies at a frequency of 5.3% +/- 1.0% whereas transfection with the plasmid containing both the integration cassette and Rep78 expression cassette produced stable fluorescent colonies at a frequency of 47% +/- 7.5%. Southern blot analysis indicated that in the presence of Rep78, integration is targeted to the AAVSI site in more than 50% of the clones analyzed. Some clones also showed tandem arrays of the integrated GFP cassette. Both head-to-head and head-to-tail orientations were detected. These findings indicate that the presence of AAV ITRs and the Rep78 protein enhance the integration of DNA sequences into the cellular genome and that the integration cassette is targeted to AAVS1 in the presence of Rep78.  相似文献   

10.
X Xiao  W Xiao  J Li    R J Samulski 《Journal of virology》1997,71(2):941-948
Adeno-associated virus (AAV) replication is dependent on two copies of a 145-bp inverted terminal repeat (ITR) that flank the AAV genome. This is the primary cis-acting element required for productive infection and the generation of recombinant AAV (rAAV) vectors. We have engineered a plasmid (pDD-2) containing only 165 bp of AAV sequence: two copies of the D element, a unique sequence adjacent to the AAV nicking site, flanking a single ITR. When assayed in vivo, this modified hairpin was sufficient for the replication of the plasmid vector when Rep and adenovirus (Ad) helper functions were supplied in trans. pDD-2 replication intermediates were characteristic of the AAV replication scheme in which linear monomer, dimer, and other higher-molecular-weight replicative intermediates are generated. Compared to infectious AAV clones for replication, the modified hairpin vector replicated more efficiently independent of size. Further analysis demonstrated conversion of the input circular plasmid to a linear substrate with AAV terminal repeat elements at either end as an initial step for replication. This conversion was independent of both Rep and Ad helper genes, suggesting the role of host factors in the production of these molecules. The generation of these substrates suggested resolution of the modified terminal repeat through a Holliday-like structure rather than replication as a mechanism for rescue. Production of replicative intermediates via this plasmid substrate were competent not only for AAV DNA replication but also for encapsidation, infection, integration, and subsequent rescue from the chromosome when superinfected with Ad and wild-type AAV. These studies demonstrate that this novel 165-bp ITR substrate is sufficient in cis for the AAV life cycle and should provide a valuable reagent for further dissecting the cis sequences involved in AAV replication, packaging, and integration. In addition, this novel plasmid vector can be used as a substrate for both rAAV vector production and synthetic plasmid vector delivery.  相似文献   

11.
C Giraud  E Winocour    K I Berns 《Journal of virology》1995,69(11):6917-6924
A model system using an episomal Epstein-Barr virus shuttle vector was recently developed to study the adeno-associated virus (AAV) site-specific integration event in chromosome 19q13.3-qter (C. Giraud, E. Winocour, and K.I. Berns, Proc. Natl. Acad. Sci. USA 91:10039-10043, 1994). In this study, we analyze the recombinant junctions generated after integration of the AAV genome into an Epstein-Barr virus shuttle vector carrying 8.2, 1.6, or 0.51 kb of the chromosome 19 preintegration sequence (AAVS1 locus). In most of the recombinants, one end of the viral genome was joined to a portion of the AAVS1 DNA previously shown to be a minimum target for AAV integration. Within this AAVS1 segment, the AAV insertion points were strikingly clustered around a binding site for the AAV regulatory protein. In all cases, the second junction with AAV occurred with vector DNA outside of the AAVS1 segment. With respect to the viral genome, one junction with the shuttle vector DNA occurred either within the AAV inverted terminal repeat (itr), or near the P5 promoter, approximately 100 nucleotides distal to a modified itr. The modified itr in 5 of 11 recombinants involved a head-to-tail organization. In one such instance, the AAV insert contained slightly more than one genome equivalent arranged in a head-to-tail manner with a junction close to the P5 promoter; the AAV insert in this recombinant episome could be rescued by adenovirus infection and replicated to virus particles. The significance of the head-to-tail organization is discussed in terms of the possible circularization of AAV DNA before or during integration.  相似文献   

12.
Integration into a particular location in human chromosomes is a unique property of the adeno-associated virus (AAV). This reaction requires the viral Rep protein and AAV origin sequences. To understand how Rep recognizes DNA, we have determined the structures of the Rep endonuclease domain separately complexed with two DNA substrates: the Rep binding site within the viral inverted terminal repeat and one of the terminal hairpin arms. At the Rep binding site, five Rep monomers bind five tetranucleotide direct repeats; each repeat is recognized by two Rep monomers from opposing faces of the DNA. Stem-loop binding involves a protein interface on the opposite side of the molecule from the active site where ssDNA is cleaved. Rep therefore has three distinct binding sites within its endonuclease domain for its different DNA substrates. Use of these different interfaces generates the structural asymmetry necessary to regulate later events in viral replication and integration.  相似文献   

13.
Recombinant adeno-associated virus (rAAV) vectors allow for sustained expression of transgene products from mouse liver following a single portal vein administration. Here a rAAV vector expressing human coagulation factor F.IX (hF.IX), AAV-EF1alpha-F.IX (hF.IX expression was controlled by the human elongation factor 1alpha [EF1alpha] enhancer-promoter) was injected into mice via the portal vein or tail vein, or directly into the liver parenchyma, and the forms of rAAV vector DNA extracted from the liver were analyzed. Southern blot analyses suggested that rAAV vector integrated into the host genome, forming mainly head-to-tail concatemers with occasional deletions of the inverted terminal repeats (ITRs) and their flanking sequences. To further confirm vector integration, we developed a shuttle vector system and isolated and sequenced rAAV vector-cellular DNA junctions from transduced mouse livers. Analysis of 18 junctions revealed various rearrangements, including ITR deletions and amplifications of the vector and cellular DNA sequences. The breakpoints of the vector were mostly located within the ITRs, and cellular DNA sequences were recombined with the vector genome in a nonhomologous manner. Two rAAV-targeted DNA sequences were identified as the mouse rRNA gene and the alpha1 collagen gene. These observations serve as direct evidence of rAAV integration into the host genome of mouse liver and allow us to begin to elucidate the mechanisms involved in rAAV integration into tissues in vivo.  相似文献   

14.
T Hong  K Drlica  A Pinter    E Murphy 《Journal of virology》1991,65(1):551-555
During infection of cells by retroviruses, some of the nonintegrated viral DNA can be found as a circular form containing two tandem, directly repeated long terminal repeats. The nucleotide sequence at the point where the long terminal repeats join (the circle junction) can be used to deduce the terminal nucleotides of the linear form of the viral DNA. Comparison of the termini of linear viral DNA with sequences at the junctions between the integrated provirus and the host chromosome has revealed that for most retroviruses 2 bp are removed from each end of the linear viral DNA during integration. For human immunodeficiency virus type 1 (HIV-1), however, sequence considerations involving primer-binding sites had suggested that only 1 bp is removed during integration. We obtained the nucleotide sequences at the ends of HIV-1 DNA by using the polymerase chain reaction to amplify fragments corresponding to the HIV-1 circle junction. Of 17 clones containing amplified sequences, 10 had identical circle junctions that contained an additional 4 bp (GTAC) relative to the integrated provirus. This indicates that, as for other retroviruses, 2 bp are removed from each end of the linear HIV-1 viral DNA during integration. The remaining seven isolates contained insertions or deletions at the circle junction.  相似文献   

15.
Adeno-associated virus (AAV) integrates very efficiently into a specific site (AAVS1) of human chromosome 19. Two elements of the AAV genome are sufficient: the inverted terminal repeats (ITRs) and the Rep78 or Rep68 protein. The incorporation of the AAV integration machinery in nonviral delivery systems is of great interest for gene therapy. We demonstrate that purified recombinant Rep68 protein is functionally active when directly delivered into human cells by using the polycationic liposome Lipofectamine, promoting the rescue-replication of a codelivered ITR-flanked cassette in adenovirus-infected cells and its site-specific integration in noninfected cells. The sequencing of cloned virus-host DNA junctions confirmed that lipofected Rep68 protein triggers site-specific integration at the same sites in chromosome 19 already characterized in cells latently infected with AAV.  相似文献   

16.
Inagaki K  Ma C  Storm TA  Kay MA  Nakai H 《Journal of virology》2007,81(20):11304-11321
A subset of cellular DNA hairpins at double-strand breaks is processed by DNA-dependent protein kinase catalytic subunit (DNA-PKcs)- and Artemis-associated endonuclease. DNA hairpin termini of adeno-associated virus (AAV) are processed by DNA repair machinery; however, how and what cellular factors are involved in the process remain elusive. Here, we show that DNA-PKcs and Artemis open AAV inverted terminal repeat (ITR) hairpin loops in a tissue-dependent manner. We investigated recombinant AAV (rAAV) genome metabolism in various tissues of DNA-PKcs- or Artemis-proficient or -deficient mice. In the absence of either factor, ITR hairpin opening was impaired, resulting in accumulation of double-stranded linear rAAV genomes capped with covalently closed hairpins at termini. The 5' end of 3-base hairpin loops of the ITR was the primary target for DNA-PKcs- and Artemis-mediated cleavage. In the muscle, heart, and kidney, DNA-PKcs- and Artemis-dependent hairpin opening constituted a significant pathway, while in the liver, undefined alternative pathways effectively processed hairpins. In addition, our study revealed a Holliday junction resolvase-like activity in the liver that cleaved T-shaped ITR hairpin shoulders by making nicks at diametrically opposed sites. Thus, our approach furthers our understanding of not only rAAV biology but also fundamental DNA repair systems in various tissues of living animals.  相似文献   

17.
The Rep78 and Rep68 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which are required for viral replication, regulation of AAV promoters, and preferential integration of the AAV genome into a region of human chromosome 19. These proteins bind the hairpin structures formed by the AAV inverted terminal repeat (ITR) origins of replication, make site- and strand-specific endonuclease cuts within the AAV ITRs, and display nucleoside triphosphate-dependent helicase activities. Additionally, several mutant Rep proteins display negative dominance in helicase and/or endonuclease assays when they are mixed with wild-type Rep78 or Rep68, suggesting that multimerization may be required for the helicase and endonuclease functions. Using overlap extension PCR mutagenesis, we introduced mutations within clusters of charged residues throughout the Rep68 moiety of a maltose binding protein-Rep68 fusion protein (MBP-Rep68Δ) expressed in Escherichia coli cells. Several mutations disrupted the endonuclease and helicase activities; however, only one amino-terminal-charge cluster mutant protein (D40A-D42A-D44A) completely lost AAV hairpin DNA binding activity. Charge cluster mutations within two other regions abolished both endonuclease and helicase activities. One region contains a predicted alpha-helical structure (amino acids 371 to 393), and the other contains a putative 3,4 heptad repeat (coiled-coil) structure (amino acids 441 to 483). The defects displayed by these mutant proteins correlated with a weaker association with wild-type Rep68 protein, as measured in coimmunoprecipitation assays. These experiments suggest that these regions of the Rep molecule are involved in Rep oligomerization events critical for both helicase and endonuclease activities.  相似文献   

18.
19.
The strand-specific, site-specific endonuclease (nicking) activity of the Rep68 and Rep78 (Rep68/78) proteins of adeno-associated virus type 2 (AAV) is involved in AAV replication, and appears to be involved in AAV site-specific integration. Rep68/78 cuts within the inverted terminal repeats (ITRs) of the AAV genome and in the AAV preferred integration locus on human chromosome 19 (AAVS1). The known endonuclease cut sites are 11-16 bases away from the primary binding sites, known as Rep recognition sequences (RRSs). A linear, double-stranded segment of DNA, containing an RRS and a cut site, has previously been shown to function as a substrate for the Rep68/78 endonuclease activity. We show here that mutation of the Rep recognition sequence, within such a DNA segment derived from the AAV ITRs, eliminates the ability of this substrate to be cleaved detectably by Rep78. Rep78 nicks the RRS-containing site from AAVS1 about half as well as the linear ITR sequence. Eighteen other RRS-containing sequences found in the human genome, but outside AAVS1, are not cleaved by Rep78. These results may help to explain the specificity of AAV integration.  相似文献   

20.
Adeno-associated virus type 2 (AAV-2) integrates specifically into a site on human chromosome 19 (chr-19) called AAVS1. To study the kinetics and frequency of chr-19-specific integration after AAV infection, we developed a rapid, sensitive, and quantitative real-time PCR assay for AAV inverted terminal repeat-chr-19-specific junctions. Despite the known variability of junction sites, conditions were established that ensured reliable quantification of integration rates within hours after AAV infection. The overall integration frequency was calculated to peak at between 10 and 20% of AAV-infected, unselected HeLa cells. At least 1 in 1,000 infectious AAV-2 particles was found to integrate site specifically up to day 4 postinfection in the absence of selection. Chromosomal breakpoints within AAVS1 agreed with those found in latently infected clonal cell lines and transgenic animals. Use of this quantitative real-time PCR will greatly facilitate the study of the early steps of wild-type and recombinant AAV vector integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号