首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dermaseptins are antimicrobial peptides from frog skin that have high membrane-lytic activity against a broad spectrum of microorganisms. The structure of dermaseptin B2 in aqueous solution, in TFE/water mixtures, and in micellar and nonmicellar SDS was analyzed by CD, FTIR, fluorescence, and NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin B2 is unstructured in water, but helical conformations, mostly in segment 3-18, are stabilized by addition of TFE. SDS titration showed that dermaseptin B2 assumes nonhelical structures at SDS concentrations far below the critical micellar concentration and helical structures at micellar concentrations. Dermaseptin B2 bound to SDS micelles (0.4 mM peptide, 80 mM SDS) adopts a well-defined amphipathic helix between residues 11-31 connected to a more flexible helical segment spanning residues 1-8 by a flexible hinge region around Val9 and Gly10. Experiments using paramagnetic probes showed that dermaseptin B2 lies near the surface of SDS micelles and that residue Trp3 is buried in the SDS micelle, but close to the surface. A slow exchange equilibrium occurs at higher peptide/SDS ratios (2 mM peptide, 80 mM SDS) between forms having distinct sets of resonances in the N-terminal 1-11 segment. This equilibrium could reflect different oligomeric states of dermaseptin B2 interacting with SDS micelles. Structure-activity studies on dermaseptin B2 analogues showed that the N-terminal 1-11 segment is an absolute requirement for antibacterial activity, while the C-terminal 10-33 region is also important for full antibiotic activity.  相似文献   

2.
Conformations of a 48-mer peptide corresponding to the amino-terminal region of influenza HA2 in aqueous and membranous environments were studied. In aqueous solution the peptide was found to be oligomeric and its helicity was enhanced at higher concentrations. The conformation in phospholipid bilayer and insertion depth into the sodium dodecyl sulfate (SDS) micelle for the fusion peptide were in line with those determined for the amino-terminal 25-mer analog. The turn of residues 28-31 found in the crystal structure of hemagglutinin at neutral pH persisted in the presence of SDS at pH 5.0. Except for the turn, conformational lability of the amino portion of HA2 is suggested by comparison of the secondary structure determined herein with that obtained with the influenza fusion protein crystallized in the aqueous phase at neutral pH. The backbone amide proton exchange experiment suggested an interaction with the micellar surface for the segment carboxy-terminal to the fusion peptide domain.  相似文献   

3.
Chugh A  Eudes F 《The FEBS journal》2008,275(10):2403-2414
The uptake of five fluorescein labeled cell-penetrating peptides (Tat, Tat(2), mutated-Tat, peptide vascular endothelial-cadherin and transportan) was studied in wheat immature embryos. Interestingly, permeabilization treatment of the embryos with toluene/ethanol (1 : 20, v/v with permeabilization buffer) resulted in a remarkably higher uptake of cell-penetrating peptides, whereas nonpermeabilized embryos failed to show significant cell-penetrating peptide uptake, as observed under fluorescence microscope and by fluorimetric analysis. Among the cell-penetrating peptides investigated, Tat monomer (Tat) showed highest fluorescence uptake (4.2-fold greater) in permeabilized embryos than the nonpermeabilized embryos. On the other hand, mutated-Tat serving as negative control did not show comparable fluorescence levels even in permeabilized embryos. A glucuronidase histochemical assay revealed that Tat peptides can efficiently deliver functionally active beta-glucuronidase (GUS) enzyme in permeabilized immature embryos. Tat(2)-mediated GUS enzyme delivery showed the highest number of embryos with GUS uptake (92.2%) upon permeabilization treatment with toluene/ethanol (1 : 40, v/v with permeabilization buffer) whereas only 51.8% of nonpermeabilized embryos showed Tat(2)-mediated GUS uptake. Low temperature, endocytosis and macropinocytosis inhibitors reduced delivery of the Tat(2)-GUS enzyme cargo complex. The results suggest that more than one mechanism of cell entry is involved simultaneously in cell-penetrating peptide-cargo uptake in wheat immature embryos. We also studied Tat(2)-plasmid DNA (carrying Act-1GUS) complex formation by gel retardation assay, DNaseI protection assay and confocal laser microscopy. Permeabilized embryos transfected with Tat(2)-plasmid DNA complex showed 3.3-fold higher transient GUS gene expression than the nonpermeabilized embryos. Furthermore, addition of cationic transfecting agent Lipofectamine 2000 to the Tat(2)-plasmid DNA complex resulted in 1.5-fold higher transient GUS gene expression in the embryos. This is the first report demonstrating translocation of various cell-penetrating peptides and their potential to deliver macromolecules in wheat immature embryos in the presence of a cell membrane permeabilizing agent.  相似文献   

4.
Sodium dodecyl sulphate (SDS), a detergent that mimics some characteristics of biological membranes, has been found to affect significantly fibril formation by a peptide from human complement receptor 1. In aqueous solution the peptide is unfolded but slowly aggregates to form fibrils. In sub-micellar concentrations of SDS the peptide is initially alpha-helical but converts rapidly to a beta-sheet structure and large quantities of fibrils form. In SDS above the critical micellar concentration the peptide adopts a stable alpha-helical structure and no fibrils are observed. These findings demonstrate the sensitivity of fibril formation to solution conditions and suggest a possible role for membrane components in amyloid fibril formation in living systems.  相似文献   

5.
Summary Conformational preferences of secretin as a model peptide have been analyzed by CD and IR spectroscopy in reverse micelles of AOT/isooctane/water and compared to those in aqueous TFE, in SDS micelles and in DMPG vesicles. Among the systems examined, reverse micelles and phospholipid vesicles displayed almost identical conformational equilibria. Very high lipid-to-peptide ratios can be obtained in reverse micelles with full retention of optical transparency, even at millimolar peptide concentrations, thus indicating this system to be an interesting mimic of cell membrane environments for spectroscopic analysis of bioactive peptide conformations.Abbreviations TFE trifluoroethanol - SDS sodium dodecyl sulfate - DMPG dimyristoylphosphatidylglycerol - AOT bis(2-ethylhexyl)sulfosuccinate - CMC critical micellar concentration - VIP vasoactive intestinal peptide  相似文献   

6.
The amyloid beta peptide (Abeta) with 39-42 residues is the major component of amyloid plaques found in brains of Alzheimer's disease patients, and soluble oligomeric peptide aggregates mediate toxic effects on neurons. The Abeta aggregation involves a conformational change of the peptide structure to beta-sheet. In the present study, we report on the effect of detergents on the structure transitions of Abeta, to mimic the effects that biomembranes may have. In vitro, monomeric Abeta(1-40) in a dilute aqueous solution is weakly structured. By gradually adding small amounts of sodium dodecyl sulfate (SDS) or lithium dodecyl sulfate to a dilute aqueous solution, Abeta(1-40) is converted to beta-sheet, as observed by CD at 3 degrees C and 20 degrees C. The transition is mainly a two-state process, as revealed by approximately isodichroic points in the titrations. Abeta(1-40) loses almost all NMR signals at dodecyl sulfate concentrations giving rise to the optimal beta-sheet content (approximate detergent/peptide ratio = 20). Under these conditions, thioflavin T fluorescence measurements indicate a maximum of aggregated amyloid-like structures. The loss of NMR signals suggests that these are also involved in intermediate chemical exchange. Transverse relaxation optimized spectroscopy NMR spectra indicate that the C-terminal residues are more dynamic than the others. By further addition of SDS or lithium dodecyl sulfate reaching concentrations close to the critical micellar concentration, CD, NMR and FTIR spectra show that the peptide rearranges to form a micelle-bound structure with alpha-helical segments, similar to the secondary structures formed when a high concentration of detergent is added directly to the peptide solution.  相似文献   

7.
Cellular internalization of cell-penetrating peptide HIV-1 Tat basic domain (RKKRRQRRR) was studied in Triticale cv AC Alta mesophyll protoplasts. Fluorescently labeled monomer (Tat) and dimer (Tat(2)) of Tat basic domain efficiently translocated through the plasma membrane of mesophyll protoplast and showed distinct nuclear accumulation within 10 min of incubation. Substitution of first arginine residue with alanine in Tat basic domain (M-Tat) severely reduced cellular uptake of the peptide (3.8 times less than Tat). Tat(2) showed greater cellular internalization than Tat (1.6 times higher). However, characteristics of cellular uptake remained same for Tat and Tat(2). Cellular internalization of Tat and Tat(2) was concentration dependent and non-saturable whereas no significant change in cellular uptake was observed even at higher concentrations of M-Tat. Low temperature (4 degrees C) remarkably increased cellular internalization of Tat as well as Tat(2) but M-Tat showed no enhanced uptake. Viability test showed that peptide treatment had no cytotoxic effect on protoplasts further indicating involvement of a common mechanism of peptide uptake at all the temperatures. Endocytic inhibitors nocodazole (10 muM), chloroquine (100 muM) and sodium azide (5 mM) did not show any significant inhibitory effect on cellular internalization of either Tat or Tat(2). These results along with stimulated cellular uptake at low temperature indicate that Tat peptide is internalized in the plant protoplasts in a non-endocytic and energy-independent manner. Competition experiments showed that non-labeled peptide did not inhibit or alter nuclear accumulation of fluorescent Tat or Tat(2) suggesting active transport to the nucleus was not involved. Studies in mesophyll protoplasts show that internalization pattern of Tat peptide is apparently similar to that observed in mammalian cell lines.  相似文献   

8.
The preferred conformation of Proadrenomedullin N-Terminal 20 Peptide (PAMP; ARLDVASEFRKKWNKWALSR-amide) has been determined using 1H and 13C two-dimensional nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. PAMP is a peptide that has various physiological functions, including its role as a proangiogenic factor in facilitating tumor growth and its inhibitory effect on catecholamine secretion at nicotinic receptors. The preferred conformation of PAMP was determined in a helix-inducing trifluoroethanol and water (TFE/H2O) solution, and in a membrane-mimetic sodium dodecylsulfate-d25 (SDS) micellar solution. The secondary structure consists of an alpha-helix for residues Arg2 to Arg20 in TFE/H2O solution and an alpha-helix for residues Arg2 to Ala17 in SDS solution. We postulate that the polar charged residues Arg2, Lys12, and Arg20 are responsible for the initial interaction of the peptide with the micelle, and that this is followed by the binding of the hydrophobic residues Leu3, Val5, Phe9, Trp13, and Trp16 to the micellar core. The three C-terminal amino acid residues adopt an extended structure in SDS, suggesting that they are important in receptor recognition and binding. This is supported by truncation studies done by Mahata et al. (Hypertension, 1998, Vol. 32, pp. 907-916), which show the importance of the C-terminal in physiological activity. Furthermore, Belloni et al. (Hypertension, 1999, Vol. 33, pp. 1185-1189), and Martinez et al. (Cancer Research, 2004, Vol. 64, pp. 6489-6494) suggested that the N-terminal was also important in PAMP activity. However, no differences in conformational preference of the N-terminal were observed between the two solvent systems.  相似文献   

9.
Estrogen has been reported to inhibit apoptosis in vascular endothelial cells. However, its precise mechanism still remains to be elucidated. Here we determined the role of Akt in the anti-apoptotic effect of estrogen. 17Beta-estradiol prevented the apoptosis induced by TNF-alpha in bovine aortic endothelial cells, as evaluated by double staining with fluorescein isothiocyanate-conjugated annexin V and propidium iodide. Introducing a dominant negative mutant of Akt by using a cell-penetrating peptide of Tat protein inhibited the anti-apoptotic effect of estrogen in a concentration-dependent manner, and resulted in the complete inhibition of the anti-apoptotic effect of 17beta-estradiol at 1nM and higher concentrations. The dominant negative mutant without the cell-penetrating peptide and Tat peptide-conjugated protein A had no effect. The intracellular protein transduction was confirmed by immunoblot analysis. Our observations thus provide first direct evidence that Akt plays a central role in the anti-apoptotic effect of estrogen in vascular endothelial cells.  相似文献   

10.
Cellular internalization of cell-penetrating peptide HIV-1 Tat basic domain (RKKRRQRRR) was studied in Triticale cv AC Alta mesophyll protoplasts. Fluorescently labeled monomer (Tat) and dimer (Tat2) of Tat basic domain efficiently translocated through the plasma membrane of mesophyll protoplast and showed distinct nuclear accumulation within 10 min of incubation. Substitution of first arginine residue with alanine in Tat basic domain (M-Tat) severely reduced cellular uptake of the peptide (3.8 times less than Tat). Tat2 showed greater cellular internalization than Tat (1.6 times higher). However, characteristics of cellular uptake remained same for Tat and Tat2. Cellular internalization of Tat and Tat2 was concentration dependent and non-saturable whereas no significant change in cellular uptake was observed even at higher concentrations of M-Tat. Low temperature (4 °C) remarkably increased cellular internalization of Tat as well as Tat2 but M-Tat showed no enhanced uptake. Viability test showed that peptide treatment had no cytotoxic effect on protoplasts further indicating involvement of a common mechanism of peptide uptake at all the temperatures. Endocytic inhibitors nocodazole (10 μM), chloroquine (100 μM) and sodium azide (5 mM) did not show any significant inhibitory effect on cellular internalization of either Tat or Tat2. These results along with stimulated cellular uptake at low temperature indicate that Tat peptide is internalized in the plant protoplasts in a non-endocytic and energy-independent manner. Competition experiments showed that non-labeled peptide did not inhibit or alter nuclear accumulation of fluorescent Tat or Tat2 suggesting active transport to the nucleus was not involved. Studies in mesophyll protoplasts show that internalization pattern of Tat peptide is apparently similar to that observed in mammalian cell lines.  相似文献   

11.
The plasma membrane represents an impermeable barrier for most macromolecules. Still some proteins and so-called cell-penetrating peptides enter cells efficiently. It has been shown that endocytosis contributes to the import of these molecules. However, conflicting results have been obtained concerning the nature of the endocytic process. In addition, there have been new findings for an endocytosis-independent cellular entry. In this study, we provide evidence that the Antennapedia-homeodomain-derived antennapedia (Antp) peptide, nona-arginine and the HIV-1 Tat-protein-derived Tat peptide simultaneously use three endocytic pathways: macropinocytosis, clathrin-mediated endocytosis and caveolae/lipid-raft-mediated endocytosis. Antennapedia differs from Tat and R9 by the extent by which the different import mechanisms contribute to uptake. Moreover, at higher concentrations, uptake occurs by a mechanism that originates from spatially restricted sites of the plasma membrane and leads to a rapid cytoplasmic distribution of the peptides. Endocytic vesicles could not be detected, suggesting an endocytosis-independent mode of uptake. Heparinase treatment of cells negatively affects this import, as does the protein kinase C inhibitor rottlerin, expression of dominant-negative dynamin and chlorpromazine. This mechanism of uptake was observed for a panel of different cell lines. For Antp, significantly higher peptide concentrations and inhibition of endocytosis were required to induce its uptake. The relevance of these findings for import of biologically active cargos is shown.  相似文献   

12.
A major challenge for the development of anticancer vaccines is the induction of a safe and effective immune response, particularly mediated by CD8+ T lymphocytes, in an adjuvant‐free manner. In this respect, we present a simple strategy to improve the specific CD8+ T cell responses using KFE8 nanofibers bearing a Class I (Kb)‐restricted peptide epitope (called E. nanofibers) without the use of adjuvant. We demonstrate that incorporation of Tat, a cell‐penetrating peptide (CPP) of the HIV transactivator protein, into E. nanofibers remarkably enhanced tumor‐specific CD8+ T cell responses. E. nanofibers containing 12.5% Tat peptide (E.Tat12.5 nanofiber) increased antigen cross‐presentation by bone marrow‐derived dendritic cells as compared with E. nanofibers, or E. nanofibers containing 25 or 50% the Tat peptide. Uptake of KFE8.Tat12.5 nanofibers by dendritic cells (DCs) was significantly increased compared with KFE8 nanofiber lacking Tat. Peritoneal and lymph node DCs of mice immunized with E.Tat12.5 nanofibers exhibited increased presentation of the H2kb‐epitope (reminiscent for cross‐presentation) compared with DCs obtained from E. nanofiber vaccinated mice. Tetrameric and intracellular cytokine staining revealed that vaccination with E.Tat12.5 triggered a robust and specific CD8+ T lymphocyte response, which was more pronounced than in mice vaccinated with E. nanofibers alone. Furthermore, E.Tat12.5 nanofibers were more potent than E. nanofiber to induce antitumor immune response and tumor‐infiltrating IFN‐γ CD8 T lymphocyte. In terms of cancer vaccine development, we propose that harnessing the nanofiber‐based vaccine platform with incorporated Tat peptide could present a simple and promising strategy to induce highly effective antitumor immune response.  相似文献   

13.
The spatial structure of Alzheimer’s amyloid Aβ10–35-NH2 peptide in aqueous solution at pH 7.3 and in SDS micelles was investigated by use of a combination of the residual dipolar coupling method and two-dimensional NMR spectroscopy (TOCSY, NOESY). At pH 7.3 Aβ10–35-NH2 adopts a compact random-coil conformation whereas in SDS micellar solutions two helical regions (residues 13–23 and 30–35) of Aβ10–35-NH2 were observed. By use of experimental data, the structure of “peptide–micelle” complex was determined; it was found that Aβ10–35-NH2 peptide binds to the micelle surface at two regions (residues 17–20 and 29–35).  相似文献   

14.
Multivalent cell-penetrating peptides (CPPs) have been reported to show enhancement in cellular uptake and endosomolytic activity. However, its application was limited to trans-delivery of cargo which is lower in cellular uptake efficiency of cargo than cis-delivery. Here, we tried the cis-delivery of cargo with multivalent CPP by preparing bioreducible dimeric CPP–cargo with apoptotic activity using TatBim peptide, a fusion of Tat CPP and Bim peptide derived from Bim apoptosis-inducing protein. Dimeric TatBim was almost twice as highly internalized by cells and significantly induced apoptosis compared to monomeric TatBim. Contribution of bioreducible linkage of dimeric TatBim towards apoptotic activity was also confirmed.  相似文献   

15.
Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake   总被引:29,自引:0,他引:29  
Cellular uptake of a family of cationic cell-penetrating peptides (examples include Tat peptides and penetratin) have been ascribed in the literature to a mechanism that does not involve endocytosis. In this work we reevaluate the mechanisms of cellular uptake of Tat 48-60 and (Arg)(9). We demonstrate here that cell fixation, even in mild conditions, leads to the artifactual uptake of these peptides. Moreover, we show that flow cytometry analysis cannot be used validly to evaluate cellular uptake unless a step of trypsin digestion of the cell membrane-adsorbed peptide is included in the protocol. Fluorescence microscopy on live unfixed cells shows characteristic endosomal distribution of peptides. Flow cytometry analysis indicates that the kinetics of uptake are similar to the kinetics of endocytosis. Peptide uptake is inhibited by incubation at low temperature and cellular ATP pool depletion. Similar data were obtained for Tat-conjugated peptide nucleic acids. These data are consistent with the involvement of endocytosis in the cellular internalization of cell-penetrating peptides and their conjugates to peptide nucleic acids.  相似文献   

16.
The regioselectivity of chlorination of phenol in aqueous solution of an anionic detergent functionalized at its head group is shown to be similar to chlorination effects by t-butyl hypochlorite in aqueous sodium dodecyl sulfate (SDS) solution. ortho Chlorination is promoted in both micellar solutions. However, when chlorination is mediated by detergents carrying no charge at their functionalized head groups, selectivity depends on micellar concentration with para chlorination predominating at high detergent concentrations. The problems and advantages inherent in head group functionalization are discussed.  相似文献   

17.
The interaction between the cell-penetrating peptide (CPP) penetratin and different membrane mimetic environments has been investigated by two different NMR methods: 15N spin relaxation and translational diffusion. Diffusion coefficients were measured for penetratin in neutral and in negatively charged bicelles of different size, in sodium dodecyl sulfate micelles (SDS), and in aqueous solution. The diffusion coefficients were used to estimate the amount of free and bicelle/micelle-bound penetratin and the results revealed that penetratin binds almost fully to all studied membrane mimetics. 15N relaxation data for three sites in penetratin were interpreted with the model-free approach to obtain overall and local dynamics. Overall correlation times for penetratin were in agreement with findings for other peptides of similar size in the same solvents. Large differences in order parameters were observed for penetratin in the different membrane mimetics. Negatively charged surfaces were seen to restrict motional flexibility, while a more neutral membrane mimetic did not. This indicates that although the peptide binds to both bicelles and SDS micelles, the interaction between penetratin and the various membrane mimetics is different.  相似文献   

18.
Cell-penetrating peptides (CPPs) are an attractive tool for delivering membrane-impermeable compounds, including anionic biomacromolecules such as DNA and RNA, into living cells. Amphipathic helical peptides composed of hydrophobic amino acids and cationic amino acids are typical CPPs. In the current study, we designed amphipathic helical 12-mer peptides containing α,α-disubstituted α-amino acids (dAAs), which are known to stabilize peptide secondary structures. The dominant secondary structures of peptides in aqueous solution differed according to the introduced dAAs. Peptides containing hydrophobic dAAs and adopting a helical structure exhibited a good cell-penetrating ability. As an application of amphipathic helical peptides, small interfering RNA (siRNA) delivery into living human hepatoma cells was investigated. One of the peptides containing dAAs dipropylglycine formed stable complexes with siRNA at appropriate zeta-potential and size for intracellular siRNA delivery. This peptide showed effective RNA interference efficiency at short peptide length and low concentrations of peptide and siRNA. These findings will be helpful for the design of amphipathic helical CPPs as intracellular siRNA delivery.  相似文献   

19.
The study of fluorescence quenching of the fluorophores allows the localization of the alkaloids (harmane and harmine) in the micelles (SDS, CTAB, Brij-35) to be established. In aqueous micellar solutions (SDS and Brij-35) at pH 13.0, emission corresponding to the neutral or zwitterionic forms can be observed. In the presence of CTAB (pH = 13.0) it was possible to observe the emission of anionic form. These species are not present in buffered aqueous solutions at these pH values. Bromide ion was added to the different surfactant solutions and the quenching effect was studied according to the Stern-Volmer equation. In the presence of SDS the quenching effect is considerably reduced compared to the aqueous solutions without surfactants, while for Brij-35 micelles were similar to those observed in homogeneous aqueous solution. For CTAB micelles a notable fluorescence quenching was observed for the different pH values studied. The fluorescence quenching studies show that the neutral species are associated inside the micelles, instead of the ionic species (cationic, zwitterionic or anionic) remaining on the surface of the micelles. The anionic surface of SDS micelles prevents the quenching effect by anionic quenchers for both neutral and charged species.  相似文献   

20.
Sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC) micelles are often used to mimic the membrane- or receptor-bound states of peptides in NMR studies. From the present examination of a 26-residue analog of exendin-4 (TrEX4) by NMR and CD in water, aqueous 30% trifluoroethanol (TFE), and bound to both SDS and DPC micelles, it is clear that these two lipid micelles can yield very different peptide structures. The Trp-cage fold (also observed in 30% TFE) is present when TrEX4 is bound to SDS micelles; however, tertiary structure is absent in the presence of DPC micelles. The loss of tertiary structure is attributed to an energetically favorable interaction (estimated as 2-3 kcal/mol) of the tryptophan side chain with the phosphocholine head groups. These dramatic structural differences suggest that care must be taken when using either SDS or DPC to mimic the membrane- or receptor-bound states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号